Главная страница

Физиология растений и животных. Скопичев В. Г. Физиология растений и животных Направление подготовки 020400 биология Профиль подготовки Биоэкология


Скачать 35.41 Mb.
НазваниеСкопичев В. Г. Физиология растений и животных Направление подготовки 020400 биология Профиль подготовки Биоэкология
АнкорФизиология растений и животных.doc
Дата13.12.2017
Размер35.41 Mb.
Формат файлаdoc
Имя файлаФизиология растений и животных.doc
ТипДокументы
#11309
страница16 из 89
1   ...   12   13   14   15   16   17   18   19   ...   89

РАСХОДОВАНИЕ ВОДЫ РАСТЕНИЕМ - ТРАНСПИРАЦИЯ


В основе расходования воды растительным организмом лежит фи­зический процесс испарения — переход воды из жидкого в парооб­разное состояние, происходящий при соприкосновении органов рас­тения с не насыщенной водой атмосферой. Однако этот процесс осложнен физиологическими и анатомическими особенностями расте­ния, и его называют транспирацией.

1. ЗНАЧЕНИЕ ТРАНСПИРАЦИИ


К. А. Тимирязев назвал транснирацию, в том объеме, в каком она идет, необходимым физиологическим злом. Действительно, в обычно протекающих размерах транспирация не является необходи­мой. Так, если выращивать растения в условиях высокой и низкой влажности воздуха, то, естественно, в первом случае транспирация будет идти со значительно меньшей интенсивностью. Однако рост растений будет одинаков или даже лучше там, где влажность воз­духа выше, а транспирация меньше. Известно, что большая часть всей поглощенной солнечной энергии тратится на транспирацию, ко­торая в определенном объеме полезна растительному организму.

Транспирация спасает растение от перегрева, который ему грозит
на прямом солнечном свете. Температура сильно транспирирующего
листа может быть примерно па 7°С ниже температуры листа завядающего, не транспирирующего. Это особенно важно в связи с тем,
что перегрев, разрушая хлоропласты, резко снижает процесс фотосинтеза, (оптимальная температура для процесса фотосинтеза около
30—33°С). Именно благодаря высокой транспирирующей способности многие растения хорошо переносят повышенную температуру. Транспирация создает непрерывный ток воды из корневой системы к листьям, который связывает все органы растения в единое целое. С транспирационным током передвигаются растворимые минеральные и частично органические питательные вещества, при этом,
чем интенсивнее транспирация, тем быстрее идет процесс передвижения.

2. ЛИСТ КАК ОРГАН ТРАНСПИРАЦИИ


Основным транспирирующим органом является лист. Средняя тол­щина листа составляет 100—200 мкм. Паренхимные клетки листа расположены рыхло, между ними имеется система межклетников, со­ставляющая в общей сложности от 15 до 25% объема листа. Лист окружен покровной тканью — эпидермисом, состоящим из компакт­но расположенных клеток, наружные стенки которых утолщены. Листья большинства растений покрыты кутикулой, в состав которой входят оксимонокарбоновые кислоты, содержащие по 16—28 атомов углерода и по 2—3 гидроксильных группы. Эти кислоты соединены друг с другом в цепочки с помощью эфирных связей. Кутикула варьирует как по составу, так и по толщине. Более развитой кутикулой характеризуются листья _светолюбивых растений по сравнению с теневы­носливыми и засухоустойчивых по сравнению с влаголюбивыми. Кутику­ла вместе с клетками эпидермиса об­разует как бы барьер на пути испа­рения паров воды. При этом особен­но значительную преграду составля­ет кутикула. Удаление кутикулы во много раз повышает интенсивность испарения. Сопротивление выходу паров воды оказывают в определен­ной мере и утолщенные стенки кле­ток эпидермиса. Все эти особенности выработались в процессе эволюции как приспособление к сокращению испарения. Для соприкосновения лис­та с атмосферой имеются устьица. Устьица — одно из оригинальных приспособлений листа, обладающее способностью открываться и закры­ваться. Обычно устьичные отверстия ограничены двумя замыкающими клетками, стенки которых неравно­мерно утолщены. У двудольных рас­тений замыкающие клетки бобовид­ной, или полулунной, формы, при этом их внутренние прилегающие друг к другу стенки более толстые, а внешние - более тонкие. Когда воды мало, замыкающие, клетки плотно прилегают друг к другу и устьичиая щель закрыта. Когда воды в замыкающих клетках много, то она давит на стенки и более тонкие стенки растягиваются сильнее, а бо­лее толстые втягиваются внутрь, между замыкающими клетками по­является щель. У однодольных растений строение замыкающих кле­ток несколько иное. Они представлены двумя удлиненными клетка­ми, на концах которых стенки более тонкие. При насыщении водой более тонкие стенки на концах растягиваются и раздвигают замы­кающие клетки, благодаря чему образуется щель (рис.).

Число устьичных отверстий колеблется в зависимости от вида растения от 1 до 60 тыс. на 1 см2 листа. Большая часть устьиц рас­положена на нижней стороне листа. Диаметр устьичных щелей со­ставляет всего 3—12 мкм. Устьица соединяют внутренние пространства листа с внешней средой. Вода поступает в лист через сеть жилок, в которых располо­жены сосудистые элементы. Возможны два пути испарения: 1) через наружные стенки клеток эпидермиса в атмосферу; 2) через стенки клеток мезофилла в межклеточное пространство листа и далее в парообразном состоянии через устьица. В связи с этим различают устьичную и кутикулярную транспирацию. В том, что действительно испарение идет не только через устьица, но и через кутикулу, легко убедиться. Так, если взять листья, у которых устьица расположены только с нижней стороны (например, листья яблони), и замазать эту сторону вазелином, то испарение воды будет продолжаться, хотя и в значительно уменьшенном размере. Следовательно, определенное количество воды испаряется через кутикулу.

Кутикулярная транспирация обычно составляет около 10% от об­щей потери воды листом. Однако в некоторых случаях у растений, листья которых характеризуются слабым развитием кутикулы, доля этого вида транспирации может повышаться до 30%. Имеет значение также возраст листа. Молодые листья, как правило, имеют слабо раз­витую кутикулу и, следовательно, более интенсивную кутикулярпую трапспирацию. Наименьшая кутикулярная транспирация наблюдает­ся у листьев, закончивших свой рост. У старых листьев доля кутикулярной транспирации снова возрастает, так как, хотя кутикула и со­храняет достаточную толщину, в ней появляются трещины, через ко­торые легко проходят пары воды.

Все же основная часть воды испаряется через устьица. Процесс устьичной транспирации.можно подразделить на ряд этапов.

Первый этап — это переход воды из клеточных оболочек, где она находится в капельно-жидком состоянии, в межклетники (парообраз­ное состояние). Это собственно процесс испарения. Важно подчерк­нуть, что уже на этом этапе растение обладает способностью регули­ровать процесс транспирации (внеустьичная регулировка). Это свя­зано с несколькими причинами: 1. Между всеми частями клетки существует водное равновесие. Чем меньше воды в клетке, тем выше становится концентрация клеточного сока. А это, в свою очередь, бу­дет уменьшать интенсивность испарения. 2. Между микро- и макро­фибриллами целлюлозы, составляющими клеточные оболочки, имеют­ся капиллярные промежутки. Вода испаряется именно из капилля­ров. Когда воды в клетках достаточно, клеточные оболочки насыщены водой, мениски в капиллярах имеют выпуклую форму, силы поверхностного натяжения ослаблены. В этом случае молеку­лы воды легко отрываются и переходят в парообразное состояние, заполняя межклетники. При уменьшении содержания воды мениски в капиллярах становятся более вогнутыми, это увеличивает силы по­верхностного натяжения и вода с большей силой удерживается в клеточных оболочках. Чем более вогнут мениск, тем путь молекул воды до межклеточных пространств более длинен и извилист. В ре­зультате интенсивность испарения сокращается. Таким образом, уже на этом первом этапе растение испаряет тем меньше воды, чем мень­ше ее содержится.

Второй этап — это выход паров воды из межклетников через устьичные щели. Поверхность всех клеточных стенок, соприкасаю­щихся с межклетными пространствами, превышает поверхность листа примерно в 10—30 раз. Все же если устьица закрыты, то все это пространство быстро насыщается парами воды и переход воды из жидкого в парообразное состояние прекращается. Иная картина на­блюдается при открытых устьи­цах. Как только часть паров воды выйдет из межклетников через устьичные щели, так сейчас же этот недостаток восполняется за счет испарения воды с поверхно­сти клеток. Поэтому степень отк­рытости устьиц является основ­ным механизмом, регулирующим интенсивность транспирации. При открытых устьицах общая поверх­ность устьичных щелей составляет всего 1—2% от площади листа. Ка­залось бы, это должно очень силь­но уменьшать испарение по срав­нению с испарением свободной водной поверхности той же площа­ди, что и лист. Однако это не так.

Сравнение испарения листа с испарением через мелко продырявленную мембрану с испарением со свободной водной поверхности той же площади показало, что оно идет не в 100 раз, как это следовало бы, исходя из размеров открытой площади (1%), а всего в 2 раза медленнее. Объяснение этому явлению в том, что испарение из ряда мелких отверстий идет быстрее, чем из одного крупного той же площади. Это связано с так называемым явлением краевой диффузии. При диффузии из отверстий, отстоящих друг от друга на некотором расстоянии, молекулы воды, расположенные по краям, рассеиваются быстрее. Естественно, что таких краевых молекул значительно больше в ряде мелких отверстий по сравнению с одним крупным. В связи с этим для малых отверстий интенсивность испарения пропорциональна их диаметру, а не площади. Указанная закономерность проявляется в том случае, если мел­кие поры расположены достаточно далеко друг от друга. Структура листа удовлетворяет указанным требованиям. Поры (устьица) имеют малый диаметр и достаточно удалены друг от друга. При открытых устьицах выход паров воды идет достаточно интенсивно, закрытие устьиц резко тормозит испарение. Именно на этом этапе вступает в действие устьичная регулировка транспирации. При недостатке воды в листе устьица автоматически закрываются.

Полное закрывание устьиц сокращает транспирацию примерно на 90%. Вместе с тем уменьшение диаметра устьичных щелей не всегда приводит к соответственному сокращению транспирационного про­цесса. Определения показали, что устьица должны закрыться боль­ше чем на 1/2, для того чтобы это сказалось па уменьшении интен­сивности транспирации.

Третий этап транспирации — это диффузия паров воды от по­верхности листа в более далекие слои атмосферы. Этот этап регули­руется лишь условиями внешней среды.

ВЛИЯНИЕ ВНЕШНИХ УСЛОВИЙ НА СТЕПЕНЬ ОТКРЫТОСТИ УСТЬИЦ


Различают три типа реакций устьичного аппарата па условия среды: 1) гидропассивная реакция — это закрывание устьичных ще­лей, вызванное тем, что окружающие паренхимпые клетки перепол­нены водой и механически сдавливают замыкающие клетки. В ре­зультате сдавливания устьица не могут открыться и устьичная щель не образуется. Гидропассивные движения обычно наблюдаются после сильных дождей или сильных поливов и могут служить причиной торможения процесса фотосинтеза; 2) гидроактивная реакция от­крывания и закрывания — это движения, вызванные изменением в содержании воды в замыкающих клетках устьиц. 3) фотоаптивная реакция. Фо­тоактивные движения проявляются в открывании устьиц на свету и закрывании в темноте. Это имеет большое приспособительное зна­чение, так как благодаря открытию устьиц на свету к хлоропластам диффундирует СО2, необходимая для процесса фотосинтеза. Меха­низм фотоактивных движений устьиц не является вполне ясным. По-видимому, свет оказывает косвенное влияние через изменение концентрации СО2 в замыкающих клетках устьиц. Если концентра­ция СО2 в межклетниках падает ниже определенной величины (эта величина зависит от вида растений и изменяется при недостатке влаги), устьица открываются. При повышении концентрации СО2 устьица закрываются. В замыкающих клетках устьиц всегда имеют­ся хлоропласты и происходит фотосинтез. На свету СО2 ассимилиру­ется в процессе фотосинтеза, содержание ее падает. СО2 оказывает влияние на степень открытости устьиц через изменение рН в замыкающих клетках. Уменьшение содержания СО2 приводит к повышению рН (сдвигу в щелочную сторону). Напротив, темнота вызывает повышение содержания СО2 и снижение рН (сдвиг в кислую сторону). Из­менение рН приводит к изменению активности ферментных систем. В частности, сдвиг рН в щелочную сторону увеличивает активность ферментов, участвующих в распаде крахмала, тогда как сдвиг в кис­лую сторону повышает активность ферментов, участвующих в син­тезе крахмала.

Распад крахмала на сахара вызывает увеличение осмотического показателя и сосущей силы. В замыкающие клетки начинает интен­сивно поступать вода из окружающих паренхимных клеток. Устьица открываются. Противоположные изменения происходят, когда про­цессы сдвигаются в сторону синтеза крахмала.

Прибавление АТФ к эпидермису увеличивает скорость открытия устьиц на свету. На основании этих данных можно считать, что осмотиче­ское давление замыкающих клеток устьиц возрастает благодаря уси­ленному поступлению калия, регулируемому АТФ. Причем для этого может быть использована АТФ, образованная в процессе фотосинте­тического фосфорилирования, происходящего на свету. В любом случае не вызывает сомне­ний необходимость АТФ для осуществления движения устьичных клеток. Открывание устьиц предупреждается, а закрывание стимулирует­ся фитогормоном — абсцизовой кислотой. Интересно в связи с этим, что абсцизовая кислота тормозит образование ферментов, участвую­щих в распаде крахмала. Имеются данные, что под влиянием абсци­зовой кислоты содержание АТФ падает. Движение устьичных клеток оказалось зависимым от температу­ры. Высокая температура повреждает устьица, в некоторых случаях настолько сильно, что они теряют способность открываться и закры­ваться. Наблюдения за степенью открытости устьиц имеют большое зна­чение в физиологической и агрономической практике. Они помогают установить необходимость снабжения растения водой. Закрытие усть­иц говорит уже о неблагоприятных сдвигах в водном обмене и, как следствие, о затруднениях в питании растений углекислотой

ВЛИЯНИЕ УСЛОВИЙ НА ПРОЦЕСС ТРАНСПИРАЦИИ


Прежде всего испарение зависит от ненасыщенности атмосферы парами воды, или дефицита влажности. Это в целом справедливо и для транспирации. Однако надо учесть, что при недостатке воды в листе вступает в силу устьичная и внеустьичная регулировка, бла­годаря чему влияние внешних условий сказывается в смягченном ви­де и транспирация начинает возрастать медленнее. Несмотря на это, общая зако­номерность зависимости транспирации от насыщенности водой ат­мосферы остается справедливой. Чем меньше относительная влажность воздуха, тем выше интенсивность транспирации.

Следующим фактором среды, оказывающим влияние на процесс транспирации, является температура. С повышением тем­пературы значительно увеличивается количество паров воды, кото­рое насыщает данное пространство. Возрастание пространства приводит к повышению дефицита влажности. В связи с этим с повышением температуры транспирация увеличи­вается. Сильное влияние на транспирацию оказывает свет. Это связано с несколькими причинами: 1. На свету повышается температура листа и это вызывает усиление процесса транспирации. На транспирацию влияют поглощенные лучи, которые и вызывают повышение температуры. В связи с этим действие света на транспирацию про­является тем сильнее, чем выше содержание хлорофилла. У зеленых растений даже рассеянный свет повышает транспирацию на 30 - 40%.

2. Под влиянием света увеличивается проницаемость цитоплаз­мы для воды, что также, естественно, увеличивает скорость ее ис­парения. 3. Под влиянием света устьица раскрываются. Все это вместе приводит к тому, что на свету транспирация идет во много раз интенсивнее, чем в темноте.

На интенсивность процесса транспирации оказывает влияние влажность почвы. С уменьшением влажности почвы транспирация уменьшается. Чем меньше воды в почве, тем меньше ее в растении. Уменьшение содержания воды в растительном организме автомати­чески снижает процесс транспирации, в силу устьичной и внеустьичной регулировки. В этой связи имеет значение и величина осмо­тического потенциала почвенного раствора. Чем она выше, тем ни­же при прочих равных условиях интенсивность транспирации.

Ветер, перемешивая слои воздуха, очень сильно увеличивает скорость испарения. Ветер оказывает влияние и на транспирацию, правда по сравнению с испарением в несколько ослабленной форме. Поскольку обычно ветер не проникает внутрь листа, то под его влиянием воз­растает в основном третий этап транспирации, т. е. перенос насы­щенного водой воздуха от поверхности листа в более дальние слои атмосферы. В силу указанных причин при ветре усиливается прежде всего кутикулярпая транспирация. Естественно поэтому, что более сильное действие ветер оказывает на транспирацию тех растений, где кутикула развита слабее. Сильнее, чем обычно, ветер сказывает­ся на транспирации при суховеях. При суховеях ветер сгибает и раз­гибает листья и горячий воздух врывается в межклетники. Этим вы­зывается усиление траиспирации уже на первом ее этапе.

Транспирация зависит как от внешних, так и от внутренних фак­торов, прежде всего от содержания воды в листьях. Всякое уменьше­ние содержания воды уменьшает транспирацию. Транспирация из­меняется в зависимости от концентрации и осмотического давления клеточного сока. Молекулы воды удерживаются осмотическими сила­ми. Чем концентрированнее клеточный сок, тем слабее транспирация. Интенсивность транспирации зависит от эластичности (способ­ности к обратимому растяжению) клеточных стенок. Если клеточные стенки малоэластичны, то уже небольшая потеря воды приводит к сокращению объема клетки до минимума. В этот период клеточные оболочки не растянуты и не оказывают сопротивления, сосущая си­ла резко возрастает и становится равной всей величине осмотическо­го давления. Возрастание сосущей силы клетки приводит к умень­шению транспирации.


Транспирация изменяется в зависимости от величины листовой поверхности, а также при изменении соотношения корни/побеги.

Чем больше развита листовая поверхность, тем больше общая потеря воды. Однако в процессе естественного отбора у растений одновремен­но с большей листовой поверхностью выработалась компенсирующая способность к меньшему испарению с единицы поверхности листа (меньшая интенсивность транспирации). Вместе с тем с увеличением этого

отношения транспирация

С увеличением возраста интенсивность транспирации, как правило, падает. Смена дня и ночи, смена условий в течение суток наложила от­печаток и па процесс транспирации. Как устьичные движения, так и транспирация имеют свой определенный суточный ход. Все растения разделяются в отношении суточного хода устьичных движений на три группы: 1) растения, у которых ночью устьица всегда закрыты. Утром устьица открывают­ся, и их дальнейшее поведение в течение дня зависит от условий среды. Мало воды — они закрываются. Достаточно воды — они откры­ваются. К этой группе относятся в первую очередь хлебные злаки; 2) растения, у которых устьица утром открываются, а днем в зави­симости от условий открыты или закрыты. Ночное их поведение за­висит от дневного. Если днем устьица были закрыты, то ночью они открываются. Если днем они были открыты, то ночью они закрыва­ются. К этой группе относятся растения с тонкими листьями — лю­церна, горох, клевер; 3) растения, у которых ночью устьица всегда открыты (суккуленты), а днем, как и у всех остальных групп рас­тений, открыты или закрыты в зависимости от условий.

Что касается суточного хода транспирации, то в ночной период суток транспирация резко сокращается. Это связано как с изменени­ем внешних факторов (повышение влажности воздуха, снижение температуры, отсутствие света), так и с внутренними особенностями (закрытие устьиц). Измерения показывают, что ночная транспира­ция составляет всего 3—5% от дневной.

Дневной ход транспирации обычно следует за изменением напря­женности основных метеорологических факторов (освещенности, температуры, влажности воздуха). Максимум транспирации будет приходиться на 12—13 ч. Это подчеркивает сравнительно малую за­висимость транспирации от физиологического состояния растения. Ведущим в этом комплексе внешних воздействий будет напряженность солнечной инсоляции. Интересно, что растения с разным рас­положением листьев несколько различаются по суточному ходу транспирационного процесса. На листья, повернутые ребром к гори­зонту, солнечные лучи начинают падать раньше. В связи с этим подъем транспирации у таких растений в утренние часы также на­чинается несколько раньше.

В случае недостатка влаги кривая суточного хода транспирационного процесса из одновершинной превращается в двухвершинную. В полуденные часы транспирация сокращается, это позволяет расте­нию восполнить недостаток воды, и тогда к вечеру транспирация сно­ва возрастает.

При частом измерении транспирации можно заметить, что это пульсирующий процесс, т. е. ему свойственно ритмичное увеличение и уменьшение интенсивности. По-видимому, это связано главным об­разом с колебанием содержания воды в растении. Увеличение транспирации приводит к уменьшению содержания воды, что, в свою оче­редь, сокращает транспирацию. Как следствие, содержание воды растет и транспирация также возрастает, и так непрерывно.

Напряженность транспирации, а также ее связь с другими про­цессами, в частности с фотосинтезом, принято выражать в следую­щих единицах.

Интенсивность транспирации — это количество воды, испаряемой растением (в мг) за единицу времени (ч) единицей поверхности листа (в дм2). Транспирационный коэффициент — количество воды (в г), испаряемой растением при накоплении им 1 г сухого вещества (транспирационные коэффициенты обычно колеблются от 300 до 1500). Продуктивность транспирации — величина, обратная транспирационному коэффициенту,— это количество сухого вещества (в г), накопленного растением за период, когда оно испаряет 1 кг воды. Относительная транспирация — отношение воды, испаряемой листом, к воде, испаряемой со свободной водной поверхности той же площа­ди за один и тот же промежуток времени. Экономность транспира­ции — количество испаряемой воды (в мг) на единицу (1 кг) воды, содержащейся в растении.
1   ...   12   13   14   15   16   17   18   19   ...   89


написать администратору сайта