Физиология растений и животных. Скопичев В. Г. Физиология растений и животных Направление подготовки 020400 биология Профиль подготовки Биоэкология
Скачать 35.41 Mb.
|
ФИЗИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ МАКРО- И МИКРОЭЛЕМЕНТОВВ растительном организме все процессы тесно взаимосвязаны. Исключение из питательной среды какого-либо необходимого элемента быстро вызывает изменение во многих, если не во всех, процессах метаболизма. В связи с этим выделить первичный эффект бывает чрезвычайно трудно. Сказанное относится в первую очередь к тем питательным элементам, которые не входят в состав определенных органических веществ, а играют скорее регуляторную или какую-то иную роль. В общем виде можно сказать, что питательные элементы имеют следующее значение: 1) входят в состав биологически важных органических веществ; 2) участвуют в создании определенной ионной концентрации, стабилизации макромолекул и коллоидных частиц (электрохимическая роль); 3) участвуют в каталитических реакциях входя в состав или активируя отдельные ферменты. Во многих случаях один и тот же элемент может играть разную роль. Некоторые элементы выполняют все три функции. МакроэлементыОстановимся сначала на физиологической роли неметаллов — фосфора и серы. Роль азота будет рассмотрена в специальной главе. Фосфор. Содержание фосфора в растениях составляет около 0,2% на сухую массу. Фосфор поступает в корневую систему растений в виде окисленных соединений, главным образом остатка орто-фосфорной кислоты (Н3РО4). При всех превращениях в растительном организме фосфор сохраняет степень окисленности. Собственно все превращения сводятся лишь к присоединению или переносу остатка фосфорной кислоты (фосфорилирование и трансфосфорилировапие). Фосфорилирование — это присоединение остатка фосфорной кислоты к какому-либо органическому соединению с образованием эфирной связи, например взаимодействие фосфорной кислоты с карбонильной, карбоксильной или спиртовой группировками. Трансфосфо-рилирование — это процесс, при котором остаток фосфорной кислоты, включенный в состав одного органического вещества, переносится на другое органическое вещество. Ряд важнейших в биологическом отношении фосфорных соединений содержат несколько остатков фосфорной кислоты (полифосфаты). Фосфор входит в состав ряда органических соединений, таких, как нуклеиновые кислоты (ДНК и РНК); нуклеотиды, фосфолипиды, витамины и многие другие, играющие центральную роль в обмене веществ. Многие фосфорсодержащие витамины и их производные являются коферментами и принимают непосредственное участие в каталитическом акте, ускоряющем течение важнейших процессов обмена. Для фосфора характерна способность к образованию связей с низким и высоким энергетическим потенциалом (макроэргические связи). Такие связи нестабильны, это облегчает их обмен и позволяет использовать энергию на самые различные биохимические и физиологические процессы. Фосфорная кислота, поступая в живые клетки корня, быстро включается в состав нуклеотидов, образуя АМФ и АДФ. Далее в процессе субстратного и окислительного фосфорилирования (анаэробная и аэробная фазы дыхания) образуется АТФ. Уже через 30 с поступивший меченый фосфор (32Р) обнаруживается в АТФ. Образовавшаяся АТФ используется на активацию сахаров, аминокислот, синтеза нуклеиновых кислот и на другие процессы. Недостаток фосфора влияет практически на все процессы жизнедеятельности растений. Фотосинтез, дыхание, рост требуют для нормального протекания достаточного снабжения фосфором. Сера содержится в растениях в среднем в количестве 0,17%. Однако в растениях семейства крестоцветных ее содержание гораздо выше. Поступает сера в растения в виде сульфатиона «S04». Сера входит в состав органических соединений, играющих важную роль в обмене веществ организма. Так, сера входит в состав трех аминокислот — цистина, цистеина и метиоиина. Почти все белки содержат серосодержащие аминокислоты, поэтому становится ясной роль серы в белковом обмене организма. Сера входит также в состав многих витаминов и коферментов, таких, как биотин, тиамин, коэнзим А, глютатион и др. В связи с этим сера принимает участие в многочисленных реакциях обмена (аэробная фаза дыхания, синтез жиров и др.). Сульфгидрильные группировки (SН) и дисульфидные связи (S—S) играют большую роль, обеспечивая взаимодействие между ферментами и их простетическими группами, а также участвуя в создании определенной конфигурации белковых молекул. Так, SН-группы связывают белок с такими коферментами, как НАД или ФАД. Часто за счет дисульфидных связей сохраняется трехмерная структура белка, а следовательно, его активность. Такой активированный сульфат подвергается дальнейшему восстановлению при участии ферредоксина. В восстановленной форме сера включается в аминокислоты. Восстановленная сера в растении может подвергаться снова окислению. Окисленная форма неактивна. Показано, что в молодых органах сера находится главным образом в восстановленной форме, а в старых — в окисленной. К макроэлементам-металлам относятся К, Са, Мg, Fе. Участие в каталитических реакциях характерно главным образом для металлов. Металлы могут осуществлять влияние па процессы обмена различным путем: 1) непосредственно входя в активный центр фермента (в простетическую группу или в апофермент). Таковы ферменты, содержащие железо, медь и некоторые другие элементы. Функция металла заключается чаще всего в переходе из окисленной в восстановленную форму, что сопровождается переносом электрона; 2) активируя тот или иной фермент путем изменения заряда белка-фермента или его конфигурации; 3) являясь связующим мостиком между ферментом и субстратом и тем самым облегчая их взаимодействие; 4) изменяя константу равновесия ферментативных реакций; 5) изменяя равновесие между активной и неактивной формами фермента; 6) связывая ингибиторы тех или иных ферментативных реакций. Кальций входит в состав растений в количестве 0,2%, поступает в виде иона Са2+. Роль кальция разнообразна. Кальций, соединяясь с пектиновыми веществами, дает пектаты кальция, которые являются важнейшей составной частью клеточных оболочек растений. Срединные пластинки, склеивающие клеточные оболочки соседних клеток, состоят по преимуществу из пектатов кальция. При недостатке кальция клеточные оболочки ослизняются, что особенно ярко проявляется на клетках корня. Кальций плохо передвигается по растению, поэтому для предупреждения ослизнения необходимо, чтобы ионы Са2+ непосредственно соприкасались с клетками корня. Сказанное было продемонстрировано в опытах, поставленных по методу изолированных водных культур. В этих опытах одну прядь корней помещали в питательный раствор, содержащий все необходимые питательные вещества; другую прядь корпя того же растения — в раствор с исключением кальция. Очень скоро клетки корня, которые находились в растворе без кальция, начали ослизняться и загнивать. Кальций повышает вязкость цитоплазмы, что видно на опытах с формами плазмолиза. В солях кальция плазмолиз имеет вогнутую форму, так как более вязкая цитоплазма с трудом отстает от клеточных оболочек. Кальциевая соль лецитина входит в состав мембран, поэтому присутствие кальция важно для нормального их функционирования. Кальций принимает участие в поддержании структуры хромосом, являясь связующим звеном между ДНК и белком. При недостатке кальция наблюдаются повреждение хромосом и нарушение митотического цикла. Кальций необходим также для поддержания структуры митохондрий и рибосом. Кальций является активатором таких ферментов, как фосфорилаза, аденозинтрифосфатаза и некоторые другие. Кальций реагирует с различными органическими кислотами, давая соли, и тем самым является в определенной мере регулятором рН клеточного сока. Магний. Содержание магния в растениях составляет 0,17%. Магний поступает в растение в виде иона Мg2+. Магний входит в состав основного пигмента зеленых листьев — хлорофилла. Магний поддерживает структуру рибосом, связывая РНК и белок. Большая и малая субъединицы рибосом ассоциируют вместе лишь в присутствии магния. Отсюда синтез белка не идет при недостатке магния, а тем более в его отсутствии. Магний является активатором многих ферментов. Важной особенностью магния является то, что он связывает фермент с субстратом по типу хелатпой связи. (Клешневидная связь между органическим веществом и катионом.) Так, например, присоединяясь к пирофосфатной группе, магний связывает АТФ с соответствующими ферментами. В связи с этим все реакции, включающие перенос фосфатной группы (большинство реакций синтеза, а также многие реакции энергетического обмена), требуют присутствия магния. Магний активирует такие ферменты, как ДНК- и РНК-полимеразы, аденозинтрифосфатазу, глютаматсинтетазу, а также ферменты, катализирующие перенос карбоксильной группы,— реакция карбоксилирования и декарбоксилирования. В ряде случаев влияние магния на работу ферментов определяется тем, что он реагирует с продуктами реакции, сдвигая равновесие в сторону их образования. Магний может также инактивировать ряд ингибиторов ферментативных реакций. Калий. Содержание калия в растении 0,9%. Он поступает в растение в виде иона К+. Физиологическую роль калия нельзя считать полностью выясненной. Калий не входит ни в одно органическое соединение. Большая часть его (70%) в клетке находится в свободной ионной форме и легко извлекается холодной водой, остальные 30% в адсорбированном состоянии. В противоположность кальцию калий снижает вязкость протоплазмы, повышает ее оводненность. Эта особенность действия калия хорошо проявляется в том, что в его солях плазмолиз имеет выпуклую форму, протоплазма легко отстает от клеточной оболочки. Следовательно, калий является антагонистом кальция. Калий активирует работу многих ферментных систем, например фермент, катализирующий фосфорилировапие сахаров,— гексокиназу, ферменты, катализирующие перенос фосфорной кислоты с пирувата на АДФ (пируваткиназа), а также ферменты, участвующие в образовании АТФ в процессе окислительного фосфорилирования. При недостатке калия резко падает содержание макроэргических фосфатов. Калий активирует и ряд ферментов цикла Кребса. Многие ферменты, участвующие в синтезе белка, требуют для своего действия присутствия калия. Недостаток калия замедляет транспорт сахарозы по флоэме. Влияние калия на передвижение органических веществ по гипотезе Спаннера проявляется благодаря образованию градиента электрического потенциала на ситовидных пластинках, который возникает при циркуляции калия между ситовидной трубкой и сопровождающими клетками. В последнее время появились данные, что открытие устьиц на свету связано с накоплением в замыкающих клетках ионов калия. Железо входит в состав растения в количестве 0,08%. Необходимость железа была показана в тот же период, что и остальных макроэлементов. Поэтому, несмотря на ничтожное содержание; его роль рассматривается вместе с макроэлементами. Железо поступает в растение в виде Fе3+. Роль железа в большинстве случаев связана с его способностью переходить из окисленной формы (Fе3+) в восстановленную (Fе2+) и обратно. Железо входит в состав каталитических центров многих окислительно-восстановительных ферментов. В виде геминовой группировки оно входит в состав таких ферментов, как цитохромы, цитохромоксидаза, каталаза и пероксидаза. Цитохромная система является необходимым компонентом дыхательной и фотосинтетической электронно-транспортной цепи. В силу этого при недостатке железа тормозятся оба эти важнейшие процессы. Кроме того, целый ряд ферментов содержит железо в негеминовой форме. К таким ферментам относятся некоторые флавопротеиды и железосодержащий белок ферредоксин. Железо необходимо для образования хлорофилла. При этом железо катализирует образование предшественников хлорофилла аминолевулиновой кислоты и протопорфиринов. Предполагают, что железо играет роль в образовании белков хлоропластов. При недостатке железа нет условий для образования таких важнейших компонентов хлоропластов, как цитохромы, ферредоксин и некоторые другие. Возможно, это косвенно влияет на образование хлорофилла. МикроэлементыПрактическая значимость исследований по микроэлементам связана с тем, что есть почвенные провинции, где остро недостает того или иного из них. Кроме того, часто в почве микроэлементы находятся в неусвояемом для растительного организма состоянии, поэтому внесение микроудобрений (удобрений, содержащих микроэлементы) в почву очень полезно. Надо учитывать при этом, что высокие дозы микроэлементов могут оказать ядовитое влияние. В изучении микроэлементов различают два направления: 1. Изучение влияния на интенсивность физиологических процессов при их исключении из питательной среды. 2. Изучение специфической роли отдельных микроэлементов, главным образом участия их в определенных ферментных реакциях. Второй биохимический подход оказался более результативным. Выяснилось, что микроэлементы в подавляющем большинстве активируют определенные каталитические — ферментативные системы. Это осуществляется различными путями — непосредственным участием в составе молекул ферментов или их активацией. Важным моментом в действии всех микроэлементов является их способность давать комплексные соединения с различными органическими соединениями, в том числе и с белками. Разные микроэлементы могут давать комплексные соединения с одними и теми же органическими веществами, благодаря чему они могут выступать как антагонисты. Отсюда понятно, что для нормального роста растений необходимо определенное соотношение микроэлементов (железа к марганцу, меди к бору и т. д.). Марганец поступает в растение в виде ионов Мn3+. Марганец активирует ферменты, катализирующие реакции цикла Кребса (дегидрогеназы яблочной кислоты, лимонной кислоты, декарбоксилазу щавелевоуксусной кислоты и др.). В связи с этим понятно большое значение марганца для процесса дыхания, особенно его аэробной фазы. Правда, имеются данные, что в некоторых из этих реакций марганец может быть заменен кобальтом. Велико значение марганца для нормального протекания обмена азотистых соединений. Марганец принимает участие в процессе восстановления нитратов до аммиака. Этот процесс проходит через этапы, катализируемые рядом ферментов, из которых два (гидроксил-аминредуктаза и нитритредуктаза) зависимы от марганца, в связи с чем растения, испытывающие недостаток марганца, не могут использовать нитраты в качестве источника азотного питания. Марганец активирует ферменты, участвующие в окислении важнейшего фитогормона — ауксина (индолилуксусная кислота). Марганец необходим для нормального протекания фотосинтеза, он участвует в этом процессе на этапе разложения воды и выделения кислорода (фоторазложение воды). Этот элемент играет специфическую роль в поддержании структуры хлоропластов. В отсутствии марганца хлорофилл быстро разрушается па свету. Медь поступает в растение в виде иона Сu2+. Она входит непосредственно в состав ряда ферментных систем, относящихся к группе оксидаз, таких, как полифенолоксидаза, аскорбатоксидаза, цитохромоксидаза. В этих ферментах медь соединена с белком, по-видимому, через SН-группы. Кроме того, медь активирует ряд ферментов, в частности нитратредуктазу, а также протеазы. Отсюда вытекает роль меди в азотном обмене. Большая часть меди (75% от всего содержания меди в листьях) концентрируется в хлоропластах. В хлоропластах сосредоточен и медьсодержащий белок синего цвета — пластоцианин. Содержание меди в пластоцианине составляет 0,57%. Пластоцианин занимает определенное место в цепи переноса электронов между первой и второй фотосистемами. В связи с этим понятно значение меди для процесса фотосинтеза. Цинк поступает в растение в виде ионов Zn2+. Он входит в состав ферментов — фосфатазы, карбоангидразы и др. Карбоангидраза катализирует разложение гидрата окиси углерода на воду и углекислый газ. Эта реакция важна для процесса фотосинтеза. Углекислый газ, поступая в клетку, растворяется в воде, образуя Н2СО3. Фермент карбоангидраза, катализируя высвобождение СО2 из гидрата окиси углерода, способствует его использованию в процессе фотосинтеза. Кроме того, цинк активирует такие ферменты, как енолаза, альдолаза, гексокиназа, триозофосфатдегидрогеназа, алкогольглютаматлактатдегид-рогеназы. В этой связи попятно значение цинка для процесса дыхания. Цинк играет важную роль при образовании фитогормона ауксина. Это связано с тем, что цинк, повышая активность триптофансинтетазы влияет па синтез аминокислоты триптофана — предшественника ауксина. Внесение цинка повышает содержание ауксинов и заметно сказывается на темпах роста растений. Молибден поступает в растение в виде аниона МоО42. При недостатке молибдена происходят заметные изменения в азотном обмене растений — наблюдается уменьшение синтеза белка при одновременном падении содержания аминокислот и амидов. Нарушения в азотном обмене проявляются особенно на фоне питания растений нитратами. Это связано с тем, что молибден входит в активный центр фермента, восстанавливающего нитраты до нитритов,— нитратредуктазу. Нитратредуктаза — это флавопротеид, простетической группой которого является флавинадениндинуклеотид (ФАД). При восстановлении нитратов молибден действует как переносчик электронов от флавинадениндинуклеотида к нитрату, при этом NО3- переходит в NО2-, а Мо+5 переходит в Мо+6. Образование нитратредуктазы является одним из немногих примеров адаптивного синтеза ферментов в растительном организме. Этот фермент образуется, когда в среде имеются нитраты и молибден. Активность нитратредуктазы возрастает в 10 и более раз при питании растений нитратами по сравнению с аммиаком. Причем появление фермента происходит уже через 1—3 ч после внесения в среду нитратов. Молибден активирует ферментные системы, участвующие в фиксации азота атмосферы различными микроорганизмами. По-видимому, он обладает и другими функциями, так как необходим растению и в условиях достаточного уровня аммиачного питания. При недостатке молибдена содержание аскорбиновой кислоты резко падает. При отсутствии молибдена наблюдаются нарушения в фосфорном обмене растений. Бор поступает в растение в виде аниона борной кислоты. Большое значение для осуществления функции бора имеет его способность давать комплексные соединения. Комплексы с борной кислотой образуют простые сахара, полисахариды, спирты, фенольные соединения и др. В этой связи можно предположить, что бор влияет на скорость ферментативных реакций, активируя или инактивируя не сами ферменты, а субстраты, па которые действуют ферменты. Комплексы органических соединений с борной кислотой могут иметь и иное значение. Так, способность бора образовывать комплексы с углеводами оказывает влияние на клеточную оболочку, регулируя ориентацию мицелл целлюлозы, что способствует ее большей эластичности. У растений, испытывающих недостаток бора, наблюдается быстрая потеря эластичности клеточных оболочек что, в свою очередь, связано с более жесткой ориентацией мицелл целлюлозы. Комплексы сахаров с бором — сахаробораты, по-видимому, легче проникают через мембраны ибыстрее передвигаются по растению. При недостатке бора сахара накапливаются в листьях и их отток резко тормозится. Известно также, что при борном голодании происходит характерное отмирание точки роста у стебля и корня. Причина этого явления, по-видимому, в недостатке углеводов из-за торможения их передвижения. Определения, проведенные с нанесением меченой сахарозы на листья, показали, что при небольшом добавлении борной кислоты отток сахарозы идет значительно быстрее. Сходные результаты были получены в опытах, в которых лист экспонировался в атмосфере, содержащей меченую углекислоту. Образовавшиеся при этом меченые продукты фотосинтеза оттекали значительно быстрее у растений, получивших бор. Показано, что при недостатке бора нарушается синтез нуклеиновых кислот. В борнедостаточных растениях заторможен процесс аминирования органических кислот. Бор может выступать как ингибитор активности ряда ферментов, в первую очередь катализирующих образование токсичных фенольных соединений. При недостатке бора наблюдается накопление кофейной и хлорогеновой кислоты, которые считаются ингибиторами роста растений. Первыми признаками борной недостаточности является загнивание и отмирание точек роста стебля и корня; цветки не образуются, листья становятся тонкими и темнеют, нарушается развитие сосудистой системы, клетки плохо дифференцируются. При недостатке бора у сахарной свеклы происходит загнивание центральной части корнеплода (гниль сердечка). Недостаток бора меньше сказывается на семействе злаковых. Другие микроэлементы. Имеются еще и такие элементы, которые усиливают рост определенных групп растений. Так, в последнее время установлено, что для зеленых фотосинтезирующих растений важное значение имеет хлор. Благоприятное влияние оказывает кобальт на рост ряда растений. Установлена необходимость кобальта для сине-зеленых водорослей. Кобальт входит в состав витамина В12 и некоторых связанных с ним соединений. Витамин В12, в состав которого входит кобальт, не поступает извне, а синтезируется в растениях даже в стерильных условиях. Это говорит в пользу необходимости кобальта. Кобальт наряду с молибденом необходим при фиксации азота атмосферы симбиотическими микроорганизмами. Трудность решения вопроса о необходимости кобальта для всех растений заключается в том, что потребность в нем чрезвычайно мала. Для роста некоторых растений засоленных почв (галофитов) оказывается полезным натрий. Благоприятное влияние оказывает натрий на рост сахарной свеклы и сине-зеленых водорослей. Для роста диатомовых водорослей необходим кремний. Кремний улучшает рост некоторых злаков, таких, как рис и кукуруза. Кремний повышает устойчивость растений против полегания, так как входит в состав клеточных стенок. Показана необходимость ванадия для зеленой одноклеточной водоросли, причем это очень специфическая потребность, так как даже для роста хлореллы ванадий не нужен. Не все растения одинаково нуждаются и в тех элементах, которые относят к необходимым. Так, уже упоминалось, что бор значительно меньше нужен злакам. Бор и кальций абсолютно необходимы для всех высших растений, что касается низших, то во многих случаях они могут расти и в отсутствии этих элементов. Для некоторых бактерий и грибов кальций может быть заменен стронцием или барием. Бобовые больше нуждаются в молибдене по сравнению с другими семействами. Калий в некоторых случаях и в небольших количествах может быть заменен рубидием или цезием. Бериллий может заменить магний для некоторых грибов и частично для томатов. Не все элементы, необходимые для жизни растений, являются таковыми для животных. Установлено, что для животных необходимы йод и кобальт. Такие различия в реакции на элементы питания различных организмов для физиолога очень важны, так как дают возможность выяснить, какую роль играет данный элемент. Так, если бор не нужен животным, то, следовательно, его функция должна быть связана со специфическими особенностями растительного организма. АНТАГОНИЗМ ИОНОВДля нормальной жизнедеятельности как растительных, так и животных организмов в окружающей их среде должно быть определенное соотношение различных катионов. Чистые растворы солей одного какого-либо катиона оказывают на организм, в том числе и на растительный, губительное влияние, т. е. являются ядовитыми. Сходные результаты получены на корнях растений. Так, при помещении проростков пшеницы на чистые растворы КС1 или СаС12 на корнях появлялись вздутия, а затем корни отмирали. Интересно, что в смешанных солевых растворах, содержащих два разных катиона, ядовитое действие не наблюдается. Смягчающее влияние, оказываемое одним катионом на действие другого катиона, называют антагонизмом ионов. Антагонизм ионов проявляется как между разными ионами одной валентности (например, Nа+ и К+), так и между ионами разной валентности (К+ и Са2+). При этом в последнем случае, антагонистическое влияние сказывается более резко. Так, для того чтобы устранить ядовитое влияние чистой соли КС1, надо прибавить NаС1 30%, а СаС12 всего 5%. Растворы, которые характеризуются определенным соотношением катионов, благоприятным для роста и развития организмов, называют уравновешенными. К естественным уравновешенным растворам относятся, например, морская вода, плазма крови. По-видимому, в основе антагонизма ионов лежит воздействие на коллоидно-химические свойства цитоплазмы, в частности на гидратацию белков, входящих в ее состав. Известно, что двухвалентные катионы (Са2+, Мg2+) дегидратируют коллоиды сильнее, чем одновалентные Nа+, К+). Неодинаково влияние на гидратацию коллоидов и катионов сходной валентности. Так, натрий оказывает более сильное дегидратирующее влияние по сравнению с калием. Сходное влияние в действии отдельных катионов проявляется и на неживых отрицательно заряженных коллоидах. Коагуляция коллоидного раствора под влиянием чистой соли происходит при меньшей ее концентрации по сравнению с концентрацией смешанных растворов, содержащих две соли. Вопрос этот заслуживает дальнейшего изучения, тем более что неблагоприятное влияние повышенной концентрации одного катиона может проявляться и в естественных условиях (в почве). Таким образом, для нормального роста растений необходимо определенное сочетание солей одно- и двухвалентных катионов. |