Физиология растений и животных. Скопичев В. Г. Физиология растений и животных Направление подготовки 020400 биология Профиль подготовки Биоэкология
Скачать 35.41 Mb.
|
ПИГМЕНТЫ ЛИСТАДля того чтобы свет мог оказывать влияние на растительный организм и, в частности, быть использованным в процессе фотосинтеза, необходимо его поглощение фоторецепторами-пигментами. Пигменты — вещества, имеющие окраску. Видимая часть спектра представлена длинами воли от 400 до 800 им. Органические вещества, поглощающие свет с длиной волны менее 400 им, кажутся бесцветными. ХЛОРОФИЛЛЫВыделенное из листьев зеленое вещество назвали хлорофиллом (от греч. «хлорос» — зеленый и «филлон» — лист). В настоящее время известно около 10 хлорофиллов. Они отличаются по химическому строению, окраске, распространению среди живых организмов. У всех высших зеленых растений содержатся хлорофиллы а и b. Хлорофилл с содержится в диатомовых водорослях, хлорофилл d — в красных водорослях. Кроме того, известны четыре бактериохлорофилла (а, b, сиd), содержащиеся в клетках фотосинтезирующих бактерий., В клетках зеленых бактерий содержатся бактериохлорофиллы с и d. В клетках пурпурных бактерий — бактериохлорофиллы а и b. Основными пигментами, без которых фотосинтез не идет, являются хлорофилл а для зеленых растений и бактериохлорофилл для бактерий. Впервые точное представление о пигментах зеленого листа было получено благодаря работам крупнейшего русского ботаника М. С. Цвета. Он выделил пигменты листа в чистом виде и разработал новый хроматографический метод разделения веществ. Хлорофиллы а и Ъ различаются по цвету. Хлорофилл а имеет сине-зеленый оттенок, а хлорофилл Ъ — желто-зеленый. Содержание хлорофилла а в листе примерно в три раза больше по сравнению с хлорофиллом Ъ. Химические свойства хлорофиллаПо химическому строению хлорофилл — это сложный эфир дикарбоновой органической кислоты — хлорофиллина и двух остатков спиртов — фитола и метилового. Хлорофиллин представляет собой азотсодержащее металлорганическое соединение, относящееся к магний-порфиринам. В центре молекулы хлорофилла расположен атом магния, который соединен с четырьмя азотами пиррольных группировок. В пиррольных группировках хлорофилла имеется система чередующихся двойных и простых связей. Это и есть хромофорная группа хлорофилла, обусловливающая его окраску. Расстояние между атомами азота пиррольных группировок в ядре хлорофилла составляет 0,25 нм. Интересно, что диаметр атома магния равен 0,24 нм. Таким образом, магний почти полностью заполняет пространство между атомами азота пиррольных группировок. Это придает ядру молекулы хлорофилла дополнительную прочность. Еще К. А. Тимирязев обратил внимание на близость химического строения двух важнейших пигментов: зеленого — хлорофилла листьев и красного — гемина крови. Действительно, если хлорофилл относится к магний-порфиринам, то гемин — к железопорфиринам. Сходство это не случайно и служит еще одним доказательством единства всего органического мира. Одной из специфических черт строения хлорофилла является наличие в его молекуле, помимо четырех гетероциклов, еще одной циклической группировки из пяти углеродных атомов — циклопентанона. В циклопептанонном кольце содержится кетогруппа, обладающая большой реакционной способностью. Есть данные, что в результате процесса эполизации по месту этой кетогруппы к молекуле хлорофилла присоединяется вода. Извлеченный из листа хлорофилл легко реагирует как с кислотами, так и со щелочами. При взаимодействии со щелочью происходит омыление хлорофилла, в результате чего образуются два спирта и щелочная соль хлорофиллина. В интактном живом листе от хлорофилла может отщепляться фитол под воздействием фермента хлорофиллазы. При взаимодействии со слабой кислотой извлеченный хлорофилл теряет зеленый цвет, образуется соединение феофитин, у которого атом магния в центре молекулы замещен на два атома водорода. Хлорофилл в живой интактной клетке обладает способностью к обратимому окислению и восстановлению. Способность к окислительно-восстановительным реакциям связана с наличием в молекуле хло рофилла сопряженных двойных связей. Эти связи фиксированы не прочно, и при их перемещении азот пиррольных ядер может окисляться (отдавать электрон) или присоединять электрон (восстанавливаться). Молекула хлорофилла полярна, ее порфириновое ядро обладает гидрофильными свойствами, а фитольный конец — гидрофобными. Это свойство молекулы хлорофилла обусловливает определенное расположение ее в мембранах хлоропластов. Исследования показали, что свойства хлорофилла, находящегося в листе и извлеченного из листа, различны, так как в листе он находится в комплексном соединении с белком подобно гемоглобину крови. Это доказывается следующими данными: 1. Спектр поглощения хлорофилла, находящегося в листе, иной по сравнению с извлеченным хлорофиллом. 2. Хлорофилл невозможно извлечь абсолютным спиртом из сухих листьев. Экстракция протекает успешно, только если листья увлажнить или к спирту добавить воды. 3. Выделенный из листа хлорофилл легко подвергается разрушению под влиянием самых разнообразных воздействий (повышенная кислотность, кислород и даже свет). Между тем в листе хлорофилл достаточно устойчив ко всем перечисленным факторам. Следует заметить, что связь между хлорофиллом и белком несколько иного характера, чем между гемином и белком. Установлено, что для гемоглобина характерно постоянное соотношение — на 1 молекулу белка приходится 4 молекулы гемина. Между тем соотношение между хлорофиллом и белком различно (от 3 до 10 молекул хлорофилла на 1 молекулу белка). Это соотношение претерпевает изменения в зависимости от типа растений, фазы их развития, условий среды. Связь между молекулами белка и хлорофиллом осуществляется путем нестойких комплексов, образующихся при взаимодействии кислых групп белковых молекул и азота пиррольных колец. Чем выше содержание дикарбоновых аминокислот в белке, тем лучше идет их комплексирование с хлорофиллом. Блокирование карбоксильных групп в белке сильно уменьшает его способность к связыванию с хлорофиллом. Белки, связанные с хлорофиллом, характеризуются низкой изоэлектрической точкой (3,7—4,9). Молекулярная масса этих белков порядка 68 тыс. Важным свойством молекул хлорофилла является их способность к взаимодействию друг с другом. В результате этого происходит их переход из мономерной в агрегированную форму, которая может возникнуть в результате взаимодействия двух и более молекул при их близком расположении друг к другу. В процессе образования хлорофилла его состояние в живой клетке закономерно меняется. При этом и происходит его агрегация. Физические свойства хлорофиллаХлорофилл способен к избирательному поглощению света и к флюоресценции. Спектр поглощения данного соединения определяется его способностью поглощать свет определенной длины волны (определенного цвета). Для того чтобы получить спектр поглощения, К. А. Тимирязев пропускал луч света сначала через раствор хлорофилла, а затем через призму. В этом случае часть лучей поглощалась. Было показано, что хлорофилл в той же концентрации, как в листе, имеет две основные линии поглощения в красных и сине-фиолетовых лучах. При этом хлорофилл а в растворе имеет максимумы поглощения 429 и 660 нм, тогда как хлорофилл b — 453 и 642 нм. Однако необходимо учитывать, что в листе спектры поглощения хлорофилла меняются в зависимости от его состояния, степени агрегации, адсорбции на определенных белках. В настоящее время показано, что есть формы хлорофилла, поглощающие свет с длиной волны 700, 710 и даже до 720 нм. Формы хлорофилла, поглощающие свет с большой длиной волны, имеют особенно важное значение в процессе фотосинтеза. Хлорофилл обладает способностью к флюоресценции. Флюоресценция представляет собой свечение тел, возбуждаемое освещением и продолжающееся очень короткий промежуток времени (10-8—10-9 с). Свет, испускаемый при флюоресценции, имеет всегда большую длину волны по сравнению с поглощенным. Это связано с тем, что часть поглощенной энергии выделяется в виде тепла. Хлорофилл обладает красной флюоресценцией. Биосинтез хлорофиллаСинтез хлорофилла происходит в две фазы: темновую — до протохлорофиллида и световую — образование из протохлорофиллида хлорофилла. Для превращения протохлорофиллида в хлорофиллид необходимо его связывание с белком голохромом и присоединение двух атомов водорода. Именно последняя реакция для большинства растений протекает с использованием энергии света (фотовосстановление). Водороды присоединяются к 7-му и 8-му атомам углерода. На последнем этапе к хлорофиллиду присоединяется спирт фитол. Поскольку синтез хлорофилла — процесс многоэтапный, в нем участвуют различные ферменты, составляющие, по-видимому, полиферментный комплекс. Интересно заметить, что образование многих белков-ферментов ускоряется на свету. Содержание хлорофилла в листе колеблется незначительно. Это связано с тем, что идет непрерывный процесс разрушения старых молекул и образование новых молекул хлорофилла. Причем эти два процесса уравновешивают друг друга. При этом предполагается, что вновь образовавшиеся молекулы хлорофилла не смешиваются со старыми и имеют несколько иные свойства. Условия образования хлорофиллаПроростки, выросшие в отсутствии света, называют этиолированными. Такие проростки, как правило, характеризуются измененной формой (вытянутые стебли, неразвившиеся листья) и слабой желтой окраской (хлорофилла в них нет). Известно, что в некоторых случаях хлорофилл образуется и в отсутствии света. Способность образовывать хлорофилл в темноте характерна для растений, стоящих на нижней ступени эволюционного процесса. Так, при благоприятных условиях питания некоторые бактерии могут синтезировать в темноте желто-зеленый пигмент — бактериохлорофилл. Сине-зеленые водоросли при достаточном снабжении органическим веществом растут и образуют пигменты в темноте. Способность к образованию хлорофилла в темноте обнаружена и у таких высокоорганизованных водорослей, как харовые. Лиственные и печеночные мхи сохраняют способность образовывать хлорофилл в темноте. Почти у всех видов хвойных при прорастании семян в темноте семядоли зеленеют. Более развита эта способность у теневыносливых пород хвойных деревьев. По мере роста проростков в темноте образовавшийся хлорофилл разрушается, и на 35—40-й день проростки в отсутствии света погибают. Интересно заметить, что проростки хвойных, выращенные из изолированных зародышей в темноте, хлорофилла не образуют. Однако достаточно присутствия небольшого кусочка нераздробленного эндосперма, чтобы проростки начинали зеленеть. Зеленение происходит даже в том случае, если зародыш соприкасается с эндоспермом другого вида хвойных деревьев. При этом наблюдается прямая корреляция между величиной окислительно-восстановительного потенциала эндосперма и способностью проростков зеленеть в темноте. В целом рассмотрение этого вопроса приводит к заключению, что в эволюционном плане хлорофилл первоначально образовался как побочный продукт процесса темнового обмена. Однако в дальнейшем на свету растения, обладающие хлорофиллом, получили большее преимущество благодаря возможности использовать энергию солнечного света, и эта особенность была закреплена естественным отбором. Исследования влияния света на накопление хлорофилла в этиолированных проростках показали, что первым в процессе зеленения появляется хлорофилл а. Нормальное соотношение хлорофилла а к хлорофиллу b (3:1) наступает только через несколько часов после начала освещения, при этом, хлорофилл b образуется из хлорофилла а. Спектрографический анализ показывает, что процесс образования хлорофилла идет очень быстро. Так, уже через 1 мин после начала освещения выделенный из этиолированных проростков пигмент имеет спектр поглощения, совпадающий со спектром поглощения хлорофилла а. При исследовании влияния качества света на образование хлорофилла в большинстве случаев проявилась положительная роль красного света. Большее значение имеет интенсивность освещения. Оказалось, что освещение электрической лампой мощностью 10 Вт на расстоянии 400 см было пределом, ниже которого образование хлорофилла прекращалось. Существует и верхний предел освещенности, выше которого образование хлорофилла тормозится. Целый ряд исследований показывает, что образование хлорофилла идет интенсивнее на прерывистом свете. Это подтверждает, что в образовании хлорофилла имеется темновая и световая фазы. При этом световая фаза значительно короче темновой. Образование хлорофилла зависит от температуры. Оптимальная температура для накопления хлорофилла 26—30°С. Как и следовало ожидать, от температуры зависит лишь образование предшественников хлорофилла (темновая фаза). При наличии уже образовавшихся предшественников хлорофилла процесс зеленения (световая фаза) идет с одинаковой скоростью независимо от температуры. На скорость образования хлорофилла оказывает влияние содержание воды. Сильное обезвоживание проростков приводит к полному прекращению образования хлорофилла. Особенно чувствительно к обезвоживанию образование протохлорофиллида. Показана необходимость углеводов для протекания процесса зеленения. Именно с этим связано то, что зеленение этиолированных проростков на свету зависит от их возраста. После 7—9-дневного возраста способность к образованию хлорофилла у таких проростков резко падает. При опрыскивании сахарозой проростки снова начинают интенсивно зеленеть. Важнейшее значение для образования хлорофилла имеют условия минерального питания. Прежде всего, необходимо достаточное количество железа. При недостатке железа даже листья взрослых растений теряют окраску. Это явление названо хлорозом. Железо — необходимый катализатор образования хлорофилла. Оно необходимо на этапе синтеза σ-аминолевулиповой кислоты из глицина и сукцинил-КоА, а также синтеза протопорфирина. Большое значение для обеспечения синтеза хлорофилла имеет нормальное снабжение растений азотом и магнием, так как оба эти элемента входят в состав хлорофилла. При недостатке меди хлорофилл легко разрушается. Это, по-видимому, связано с тем, что медь способствует образованию устойчивых комплексов между хлорофиллом и соответствующими белками. Исследование процесса накопления хлорофилла у растений в течение вегетационного периода показало, что максимальное содержание хлорофилла приурочено к началу цветения. Есть даже мнение, что повышение образования хлорофилла может быть использовано как индикатор, указывающий на готовность растений к цветению. Синтез хлорофилла зависит от деятельности корневой системы. Так, при прививках содержание хлорофилла в листьях привоя зависит от свойств корневой системы подвоя. Возможно, что влияние корневой системы связано с тем, что там образуются гормоны (цитокинины). У двудомных растений большим содержанием хлорофилла характеризуются листья женских особей. КАРОТИНОИДЫНаряду с зелеными пигментами в хлоропластах и хроматофорах содержатся пигменты, относящиеся к группе каротиноидов. Каротиноиды — это желтые и оранжевые пигменты алифатического строения, производные изопрена. Каротиноиды содержатся во всех высших растениях и у многих микроорганизмов. Это самые распространенные пигменты с разнообразными функциями. Каротиноиды, содержащие кислород, получили название ксантофиллов. Основными представителями каротиноидов у высших растений являются два пигмента —β-каротин (оранжевый) С40Н56 и ксантофилл (желтый) С40Н56О2. Каротин состоит из 8 изопреновых остатков. При разрыве углеродной цепочки пополам и образовании на конце спиртовой группы, каротин превращается в 2 молекулы витамина А. Обращает на себя внимание сходство в структуре фитола — спирта, входящего в состав хлорофилла, и углеродной цепочки, соединяющей циклогексениловые кольца каротина. Предполагается, что фитол возникает как продукт гидрирования этой части молекулы каротиноидов. Каротиноиды имеют большое количество конъюгированных двойных связей, поэтому они способны к окислительно-восстановительным реакциям. Поглощение света каротиноидами, а, следовательно, их окраска также обусловлены наличием конъюгированных двойных связей, β-каротин имеет два максимума поглощения, соответствующие длинам волн 482 и 452 нм. Красные лучи, поглощаемые хлорофиллами, каротиноиды не поглощают. Каротиноиды, в отличие от хлорофилла, не обладают способностью к флюоресценции. Подобно хлорофиллу каротиноиды в хлоропластах вступают во взаимодействие с белками. Физиологическая роль каротиноидов. Уже тот факт, что каротиноиды всегда присутствуют в хлоропластах, позволяет считать, что они принимают участие в процессе фотосинтеза. Однако не отмечено ни одного случая, когда в отсутствии хлорофилла этот процесс осуществляется, поэтому считают, что роль каротиноидов вспомогательная. В настоящее время предполагается, что каротиноиды, поглощая определенные участки солнечного спектра, передают энергию этих лучей на молекулы хлорофилла. Тем самым они способствуют использованию лучей, которые хлорофиллом не поглощаются. Физиологическая роль каротиноидов не ограничивается их участием в передаче энергии на молекулы хлорофилла. На свету происходит взаимопревращение ксантофиллов (виолоксантин превращается в зеаксантин), что сопровождается выделением кислорода. Спектр действия этой реакции совпадает со спектром поглощения хлорофилла, что позволило высказать предположение об ее участии в процессе фотосинтеза. Имеются данные, что каротиноиды выполняют защитную функцию, предохраняя различные органические вещества, в первую очередь молекулы хлорофилла, от разрушения на свету в процессе фотоокисления. Опыты, проведенные на мутантах кукурузы и подсолнечника, показали, что они содержат протохлорофиллид (темновой предшественник хлорофилла), который на свету переходит в хлорофилл а, но разрушается. Последнее связано с отсутствием способности исследованных мутантов к образованию каротиноидов. Ряд исследователей указывает, что каротиноиды играют определенную роль в половом процессе у растений. Известно, что в период цветения высших растений содержание каротиноидов в листьях уменьшается. Одновременно оно заметно растет в пыльниках, а также в лепестках цветков. Микроспорогенез тесно связан с метаболизмом каротиноидов. Незрелые пыльцевые зерна имеют белую окраску, а созревшая пыльца — желто-оранжевую. В половых клетках водорослей наблюдается дифференцированное распределение пигментов. Мужские гаметы имеют желтую окраску и содержат каротиноиды. Женские гаметы содержат хлорофилл. Высказывается мнение, что именно каротин обусловливает подвижность сперматозоидов. Материнские клетки водоросли хламидомонады образуют половые клетки (гаметы) первоначально без жгутиков, в этот период они еще не могут передвигаться в воде. Жгутики образуются только после освещения гамет длинноволновыми лучами, которые улавливаются особым каротиноидом — кроцином. Образование каротиноидов. Синтез каротиноидов не требует света. При формировании листьев каротиноиды образуются и накапливаются в пластидах еще в тот период, когда зачаток листа защищен в почке от действия света. При начале освещения образование хлорофилла в этиолированных проростках сопровождается временным падением содержания каротиноидов. Однако затем содержание каротиноидов восстанавливается и даже повышается с увеличением интенсивности освещения. Показана тесная зависимость образования каротиноидов от азотного обмена. Установлено, что между содержанием белка и каротиноидов имеется прямая коррелятивная связь. Потеря белка и каротиноидов в срезанных листьях идет параллельно. Образование каротиноидов зависит от источника азотного питания. Более благоприятные результаты по накоплению каротиноидов получены при выращивании растений на нитратном фоне по сравнению с аммиачным. Недостаток серы резко уменьшает содержание каротиноидов. Большое значение имеет соотношение Са в питательной среде. Относительное увеличение содержания Са приводит к усиленному накоплению каротиноидов по сравнению с хлорофиллом. Противоположное влияние оказывает увеличение содержания магния. ФИКОБИЛИНЫФикобилины — красные и синие пигменты, содержащиеся в хроматофорах некоторых водорослей. Исследования показали, что багряные, сине-зеленые водоросли наряду с хлорофиллом а содержат фикобилины. В основе химического строения фикобилинов лежат четыре пиррольные группировки. В отличие от хлорофилла у фикобилинов пиррольные группы расположены в виде открытой цепочки. Фикобилины представлены двумя пигментами: фикоцианином (у сине-зеленых водорослей) и фикоэритрином (красные водоросли). Фикоэритрин — это окисленный фикоцианин. Фикобилины образуют соединения с белками, содержащимися в хроматофорах. При этом связь между фикобилинами и белками очень прочная. Эта связь разрушается только кислотой. Предполагается, что карбоксильные группы пигмента связываются с аминогруппами белка. Фикобилины поглощают лучи в зеленой и желтой части солнечного спектра. Это та часть спектра, которая находится между двумя основными линиями поглощения хлорофилла. Фикоэритрин поглощает лучи с длиной волны 495—565 им, а фикоцианин — 550—615 нм. Сравнение спектров поглощения фикобилинов со спектром, в котором проходит фотосинтез у водорослей (спектр действия), показывает, что они очень близки. Это позволяет считать, что фикобилины поглощают энергию света и подобно каротиноидам передают ее на молекулу хлорофилла, после чего она используется в процессе фотосинтеза. Наличие фикобилинов у водорослей является примером приспособления в процессе эволюции к поглощению тех участков солнечного спектра, которые проникают сквозь толщу морской воды (явление филогенетической хроматической адаптации). Как известно, красные лучи, соответствующие основной линии поглощения хлорофилла, поглощаются, проходя через толщу морской воды. Наиболее глубоко проникают зеленые лучи, которые поглощаются не хлорофиллом, а фикобилинами. Таким образом, наличие фикобилинов позволяет водорослям в процессе фотосинтеза использовать те лучи, которые к ним проникают. |