Главная страница

Справочный материал. Глава 23 – Сердечно-сосудистая система. Справочный материал по Физиологии. Глава 23 Сердечнососудистая система


Скачать 0.85 Mb.
НазваниеСправочный материал по Физиологии. Глава 23 Сердечнососудистая система
АнкорСправочный материал. Глава 23 – Сердечно-сосудистая система.doc
Дата16.05.2017
Размер0.85 Mb.
Формат файлаdoc
Имя файлаСправочный материал. Глава 23 – Сердечно-сосудистая система.doc
ТипДокументы
#7685
КатегорияМедицина
страница6 из 10
1   2   3   4   5   6   7   8   9   10

Системное кровообращение

Кровеносные сосуды — замкнутая система, в которой кровь непрерывно циркулирует от сердца к тканям и обратно к сердцу (рис. 23–14). Системный кровоток, или большой круг кровообращения включает все сосуды, получающие кровь от левого желудочка и заканчивающиеся в правом предсердии. Сосуды, расположенные между правым желудочком и левым предсердием, составляют лёгочный кровоток, или малый круг кровообращения.



Рис. 23–14. Схема кровеносной и лимфатической систем: 1 — левое предсердие (а) и левый желудочек (б); 2 — аорта, большой круг кровообращения; 3, 4 — брыжеечные артерии и вены; 5 — воротная вена; 6 — печень, деление воротной вены на ветви; 7 — печёночные вены; 8 — микроциркуляторное русло: а — артериальная часть, б — венозная часть; 9 — полая вена; 10 — правое предсердие (а) и правый желудочек (б); 11 — малый (лёгочный) круг кровообращения: а — лёгочные артерии, функционально — вены, б — лёгочные вены, функционально — артерии; 12 — лимфатические коллекторы; 13 — лимфатические узлы; 14 — лимфатические стволы.
Структурно-функциональная классификация

В зависимости от строения стенки кровеносного сосуда в сосудистой системе различают (рис. 23–15) артерии, артериолы, капилляры, венулы и вены, межсосудистые анастомозы, микроциркуляторное русло и гематические барьеры (например, гематоэнцефалический). Функционально сосуды подразделяют на амортизирующие (артерии), резистивные (концевые артерии и артериолы), прекапиллярные сфинктеры (концевой отдел прекапиллярных артериол), обменные (капилляры и венулы), ёмкостные (вены), шунтирующие (артериовенозные анастомозы).



Рис. 23–15. Типы кровеносных сосудов [11]. ААорта. Поверхность внутренней оболочки выстлана эндотелиальными клетками. Подэндотелиальный слой содержит коллагеновые и эластические волокна. Здесь встречаются фибробласты и клетки, напоминающие по строению ГМК. С возрастом и особенно при атеросклерозе внутренняя оболочка утолщается, а ГМК накапливают липиды. Мощная средняя оболочка содержит окончатые эластические мембраны. В соединительной ткани наружной оболочки проходят нервные волокна и vasa vasorum. Часть vasa vasorum проникает в наружные отделы средней оболочки. БАртерия и сопровождающая вена в составе сосудисто-нервного пучка. ВМикроциркуляторное русло. Артериола ® метартериола ® капиллярная сеть с двумя отделами — артериальным и венозным ® венула. Артериовенозные анастомозы соединяют артериолы с венулами. ГТипы капилляров: 1 — капилляр с непрерывным эндотелием, 2 — с фенестрированным эндотелием, 3 — капилляр синусоидного типа.

 Артерии — кровеносные сосуды, транспортирующие кровь от сердца. Артерии, расположенные вблизи сердца (магистральные сосуды), испытывают наибольший перепад давления. Поэтому они обладают выраженной эластичностью (артерии эластического типа). Стенка магистральных артерий амортизирует ударную волну крови (систолический выброс) и переправляет далее выбрасываемую с каждым ударом сердца кровь. Периферические артерии (распределительные сосуды) имеют развитую мышечную стенку (артерии мышечного типа), способны изменять величину просвета, а следовательно, скорость кровотока и распределение крови в сосудистом русле.

 Артерии эластического типа (рис. 23–15А) — магистральные артерии. К ним относят аорту, лёгочные, общую сонную и подвздошные артерии. В состав их стенки в большом количестве входят эластические мембраны и эластические волокна. Толщина стенки артерий эластического типа составляет примерно 15% диаметра их просвета.

 Артерии мышечного типа (рис. 23–15Б). Их суммарный диаметр (толщина стенки + диаметр просвета) достигает 1 см, диаметр просвета варьирует от 0,3 до 10 мм. Артерии мышечного типа — распределительные, т.к. именно эти сосуды (благодаря выраженной способности к изменению просвета) контролируют интенсивность кровотока (перфузию) отдельных органов.

 Артериолы. Артерии мышечного типа переходят в артериолы — короткие сосуды, имеющие важное значение для регуляции АД.

 Терминальные артериолы. В месте отхождения от терминальной артериолы капилляра обычно располагается скопление циркулярно ориентированных ГМК, образующих прекапиллярный сфинктер (единственная структура капиллярной сети, содержащая ГМК).

 Капилляры (рис. 23–15Г). Разветвлённая капиллярная сеть соединяет артериальное и венозное русла. Капилляры участвуют в обмене веществ между кровью и тканями. Общая обменная поверхность (поверхность капилляров и венул) составляет не менее 1000 м2, а в пересчёте на 100 г ткани — 1,5 м2. В регуляции капиллярного кровотока принимают непосредственное участие артериолы и венулы. В совокупности эти сосуды (от артериол до венул включительно) образуют структурно-функциональную единицу сердечно-сосудистой системы — терминальное, или микроциркуляторное русло.

 Плотность капилляров в различных органах существенно варьирует. Так, на 1 мм3 миокарда, головного мозга, печени, почек приходится 2500–3000 капилляров; в скелетной мышце — 300–1000 капилляров; в соединительной, жировой и костной тканях их значительно меньше.

 Структура. Стенка капилляра образована эндотелием, его базальной мембраной и перицитами. Различают три основных типа капилляров (рис. 23–15Г): с непрерывным эндотелием (1), с фенестрированным эндотелием (2) и с прерывистым эндотелием (3).

 Капилляры с непрерывным эндотелием — наиболее распространённый тип. Диаметр их просвета менее 10 мкм. Эндотелиальные клетки связаны при помощи плотных контактов, содержат множество пиноцитозных пузырьков, участвующих в транспорте метаболитов между кровью и тканями. Капилляры этого типа характерны для мышц и лёгких.

Барьеры. Частный случай капилляров с непрерывным эндотелием — капилляры, формирующие гематоэнцефалический и гематотимический барьеры. Для эндотелия капилляров барьерного типа характерно умеренное количество пиноцитозных пузырьков и плотные межэндотелиальные контакты.

 Капилляры с фенестрированным эндотелием присутствуют в капиллярных клубочках почки, эндокринных железах, ворсинках кишки, в экзокринной части поджелудочной железы. Фенестра — истончённый участок эндотелиальной клетки диаметром 50–80 нм. Предполагают, что фенестры облегчают транспорт веществ через эндотелий. Наиболее чётко фенестры видны на электронограммах капилляров почечных телец (см. рис. 26–10).

 Капилляр с прерывистым эндотелием называют также капилляром синусоидного типа, или синусоидом. Подобный тип капилляров присутствует в кроветворных органах, состоит из эндотелиальных клеток с щелями между ними и прерывистой базальной мембраны.

 Микроциркуляторное русло (рис. 23–15В) организовано следующим образом: под прямым углом от артериолы отходят так называемые метартериолы (терминальные артериолы), а уже от них берут начало анастомозирующие между собой истинные капилляры, образующие сеть. В местах отделения капилляров от метартериолы имеются прекапиллярные сфинктеры, контролирующие локальный объём крови, проходящий через истинные капилляры. Объём же крови, проходящей через терминальное сосудистое русло в целом, определяется тонусом ГМК артериол. В микроциркуляторном русле присутствуют артериовенозные анастомозы, связывающие артериолы непосредственно с венулами или мелкие артерии с мелкими венами. Стенка сосудов анастомоза содержит много ГМК. Артериовенозные анастомозы в большом количестве присутствуют в некоторых участках кожи, где они играют важную роль в терморегуляции (мочка уха, пальцы).

 Гематоэнцефалический барьер (см. рис. 25–11) надёжно изолирует мозг от временных изменений состава крови. Непрерывный эндотелий капилляров — основа гематоэнцефалического барьера. Снаружи эндотелиальная трубка покрыта базальной мембраной. Капилляры мозга почти полностью окружены отростками астроцитов, а эндотелиальные клетки связаны при помощи непрерывных цепочек плотных контактов.

 Функция. Гематоэнцефалический барьер функционирует как избирательный фильтр.

 Липофильные вещества. Наибольшей проницаемостью обладают вещества, растворимые в липидах (например, никотин, этиловый спирт, героин).

 Транспортные системы

 Глюкоза транспортируется из крови в мозг при помощи соответствующих транспортёров.

 Глицин. Особое значение для мозга имеет система транспорта тормозного нейромедиатора — глицина. Его концентрация в непосредственной близости от нейронов должна быть значительно ниже, чем в крови. Эти различия в концентрации глицина обеспечивают транспортные системы эндотелия.

 Лекарственные препараты. Многие ЛС плохо растворимы в липидах, поэтому медленно или совсем не проникают в мозг. Казалось бы, с увеличением концентрации ЛС в крови можно было ожидать увеличения его транспорта через гематоэнцефалический барьер. Однако, это допустимо только в случае использования малотоксичных препаратов (например, пенициллина). Большинство ЛС имеет побочные эффекты, поэтому их нельзя вводить в избытке в расчёте на то, что часть дозы достигнет мишени в мозге. Один из путей введения лекарства в мозг наметился после установления феномена резкого усиления проницаемости гематоэнцефалического барьера при введении в сонную артерию гипертонического раствора сахара, что связано с эффектом временного ослабления контактов между эндотелиальными клетками гематоэнцефалического барьера.

 Венулы принимают кровь из капилляров и постепенно собираются в вены. Венулы, как никакие другие сосуды, имеют прямое отношение к течению воспалительных реакций. Через их стенку при воспалении проходят массы лейкоцитов (диапедез) и плазма. Кровь из капиллярной сети последовательно поступает в посткапиллярные, собирательные и мышечные венулы.

 Посткапиллярная венула. Венозная часть капилляров плавно переходит в посткапиллярную венулу. Её диаметр может достигать 30 мкм. Гистамин (через гистаминовые рецепторы) вызывает резкое увеличение проницаемости эндотелия посткапиллярных венул, что приводит к отёку окружающих тканей.

 Собирательная венула. Посткапиллярные венулы впадают в собирательную венулу.

 Мышечная венула. Собирательные венулы впадают в мышечные венулы диаметром до 100 мкм. Название сосуда — мышечная венула — определяет присутствие ГМК.

 Вены — сосуды, по которым кровь оттекает от органов и тканей к сердцу. Более 60% объёма циркулирующей крови находится в венах. Давление в венах низкое, стенка тонкая, однако мышечного слоя достаточно, чтобы вены могли активно участвовать в реакциях перераспределения крови между различными тканями и органами. Некоторые вены имеют клапаны.

Клапаны. Вены, особенно конечностей, имеют клапаны, пропускающие кровь только по направлению к сердцу. Соединительная ткань образует структурную основу створок клапанов, а вблизи их фиксированного края располагаются ГМК. В целом клапаны можно рассматривать как складки интимы (внутренней оболочки).
Физиологические параметры кровотока

Ниже приведены основные физиологические параметры, необходимые для характеристики кровотока.

 Систолическое давление — максимальное давление, достигаемое в артериальной системе во время систолы. В норме систолическое давление в большом круге кровообращения равно в среднем 120 мм рт.ст.

 Диастолическое давление — минимальное давление, возникающее во время диастолы в большом круге кровообращения, составляет в среднем 80 мм рт.ст.

 Пульсовое давление. Разность между систолическим и диастолическим давлением называют пульсовым давлением.

 Среднее артериальное давление (САД) ориентировочно оценивают по формуле:

САД = [систолическое АД + 2(диастолическое АД)]/3

Среднее АД в аорте (90–100 мм рт.ст.) по мере разветвления артерий постепенно понижается. В концевых артериях и артериолах давление резко падает (в среднем до 35 мм рт.ст.), а затем медленно снижается до 10 мм рт.ст. в крупных венах (рис. 23–16А).



Рис. 23–16. Значения АД (А) и линейной скорости кровотока (Б)  в различных сегментах сосудистой системы [21]

 Площадь поперечного сечения. Диаметр аорты взрослого человека составляет 2 см, площадь поперечного сечения — около 3 см2. По направлению к периферии площадь поперечного сечения артериальных сосудов медленно, но прогрессивно возрастает. На уровне артериол площадь поперечного сечения составляет около 800 см2, а на уровне капилляров и вен — 3500 см2. Площадь поверхности сосудов значительно уменьшается, когда венозные сосуды соединяются, образуя полую вену с площадью поперечного сечения в 7 см2.

 Линейная скорость тока крови обратно пропорциональна площади поперечного сечения сосудистого русла. Поэтому средняя скорость движения крови (рис. 23–16Б) выше в аорте (30 см/с), постепенно снижается в мелких артериях и наименьшая в капиллярах (0,026 см/с), общее поперечное сечение которых в 1000 раз больше, чем в аорте. Средняя скорость кровотока снова увеличивается в венах и становится относительно высокой в полых венах (14 см/с), но не столь высокой, как в аорте.

 Объёмная скорость кровотока (обычно выражают в миллилитрах в минуту или литрах в минуту). Общий кровоток у взрослого человека в состоянии покоя — около 5000 мл/мин. Именно это количество крови выкачивается сердцем каждую минуту, поэтому его называют также сердечным выбросом.

 Скорость кровообращения (скорость кругооборота крови) может быть измерена на практике: от момента инъекции препарата солей жёлчных кислот в локтевую вену до времени появления ощущения горечи на языке (рис. 23–17А). В норме скорость кровообращения составляет 15 с.

 Сосудистая ёмкость. Размеры сосудистых сегментов определяют их сосудистую ёмкость. Артерии содержат около 10% общего количества циркулирующей крови, капилляры — около 5%, венулы и небольшие вены — примерно 54% и большие вены — 21%. Камеры сердца вмещают остающиеся 10%. Венулы и небольшие вены обладают большой ёмкостью, что делает их эффективным резервуаром, способным накапливать большие объёмы крови.
Биофизические аспекты кровотока

Кровь движется из области высокого давления в область более низкого давления. Соотношения между средними величинами кровотока, давления и сопротивления в кровеносных сосудах аналогичны соотношениям между током, напряжением и сопротивлением в законе Ома. Объёмный кровоток в любой части сосудистой системы равен отношению эффективного перфузионного давления к гидродинамическому сопротивлению.

Эффективное перфузионное давление определяют как разницу среднего давления в артериальном конце и среднего давления в начале венозного русла. Сопротивление (препятствие потоку крови в сосуде) не может быть измерено каким-нибудь прямым способом. Вместо этого сопротивление может быть рассчитано после измерения кровотока и разницы давлений между двумя точками сосуда. Если разность давлений между двумя точками равна 1 мм рт.ст., кровоток — 1 мл/с, то сопротивление равно 1 ЕД сопротивления.
Методы измерения кровотока

 Электромагнитная флоуметрия основана на принципе генерации напряжения в проводнике, движущемся через магнитное поле, и пропорциональности величины напряжения скорости движения. Кровь является проводником, магнит располагается вокруг сосуда, а напряжение, пропорциональное объёму кровотока, измеряется электродами, расположенными на поверхности сосуда.

 Допплерометрия использует принцип прохождения ультразвуковых волн через сосуд и отражения волн от движущихся эритроцитов и лейкоцитов. Частота отражённых волн меняется — возрастает пропорционально скорости тока крови.

 Измерение сердечного выброса осуществляют прямым методом Фика и методом индикаторного разведения. Метод Фика основан на косвенном подсчёте минутного объёма кровообращения по артериовенозной разнице O2 и определении объёма кислорода, потребляемого человеком в минуту. В методе индикаторного разведения (радиоизотопный метод, метод термодилюции) применяют введение индикаторов в венозную систему с последующим взятием проб из артериальной системы.

 Плетизмография. Информацию о кровотоке в конечностях получают с помощью плетизмографии (рис. 23–17Б).



Рис. 2317. Определение времени кровотока (А) и плетизмография (Б). 1 — место инъекции маркёра, 2 — конечная точка (язык), 3 — регистратор объёма, 4 — вода, 5 — резиновый рукав.

Предплечье помещают в заполненную водой камеру, соединённую с прибором, записывающим колебания объёма жидкости. Изменения объёма конечности, отражающие изменения в количестве крови и интерстициальной жидкости, смещают уровень жидкости и регистрируют плетизмографом. Если венозный отток конечности выключается, то колебания объёма конечности являются функцией артериального кровотока конечности (окклюзионная венозная плетизмография).
Физика движения жидкости в кровеносных сосудах

Принципы и уравнения, используемые для описания движения идеальных жидкостей в трубках, часто применяют для объяснения поведения крови в кровеносных сосудах. Однако кровеносные сосуды — не жёсткие трубки, а кровь — не идеальная жидкость, а двухфазная система (плазма и клетки), поэтому характеристики кровообращения отклоняются (иногда весьма заметно) от теоретически рассчитанных.

 Ламинарный поток. Движение крови в кровеносных сосудах можно представить как ламинарное (т.е. обтекаемое, с параллельным течением слоёв). Слой, прилежащий к сосудистой стенке, практически неподвижен. Следующий слой движется с небольшой скоростью, в слоях ближе к центру сосуда скорость движения нарастает, а в центре потока максимальна. Ламинарное движение сохраняется до достижения некоторой критической скорости. Выше критической скорости ламинарный поток становится турбулентным (вихревым). Ламинарное движение бесшумно, турбулентное движение порождает звуки, при должной интенсивности слышимые стетофонендоскопом.

 Турбулентный поток. Возникновение турбулентности зависит от скорости потока, диаметра сосуда и вязкости крови. Сужение артерии увеличивает скорость кровотока через место сужения, создаёт турбулентность и звуки ниже места сужения. Примеры шумов, воспринимаемых над стенкой артерии, — шумы над участком сужения артерии, вызванным атеросклеротической бляшкой, и тоны Короткова при измерении АД. При анемии наблюдают турбулентность в восходящей аорте вследствие снижения вязкости крови, отсюда и систолический шум.

 Формула Пуазейля. Соотношение между током жидкости в длинной узкой трубке, вязкостью жидкости, радиусом трубки и сопротивлением определяется по формуле Пуазейля:

,

где R — сопротивление трубки,  — вязкость протекающей жидкости, L — длина трубки, r — радиус трубки.

Так как сопротивление обратно пропорционально четвёртой степени радиуса, то в организме кровоток и сопротивление существенно меняются в зависимости от небольших изменений калибра сосудов. Например, кровоток через сосуды удваивается при увеличении их радиуса только на 19%. Когда радиус увеличивается в 2 раза, то сопротивление уменьшается на 6% от исходного уровня. Эти выкладки позволяют понять, почему органный кровоток столь эффективно регулируется минимальными изменениями просвета артериол и почему вариации диаметра артериол оказывают такой сильный эффект на системное АД.

 Вязкость и сопротивление. Сопротивление кровотоку определяется не только радиусом кровеносных сосудов (сопротивление сосудов), но и вязкостью крови. Плазма примерно в 1,8 раза более вязкая, чем вода. Вязкость цельной крови в 3–4 раза выше вязкости воды. Следовательно, вязкость крови в значительной степени зависит от гематокрита, т.е. процентного содержания эритроцитов в крови. В крупных сосудах увеличение гематокрита вызывает ожидаемое повышение вязкости. Однако в сосудах с диаметром менее 100 мкм, т.е. артериолах, капиллярах и венулах изменения вязкости на единицу изменений гематокрита намного меньше, чем в больших сосудах.

 Изменения гематокрита сказываются на периферическом сопротивлении, главным образом, крупных сосудов. Тяжёлая полицитемия (увеличение количества эритроцитов разной степени зрелости) повышает периферическое сопротивление, увеличивая работу сердца. При анемии периферическое сопротивление понижено, отчасти за счёт уменьшения вязкости.

 В сосудах эритроциты стремятся расположиться в центре текущего потока крови. Следовательно, вдоль стенок сосудов движется кровь с низким гематокритом. Ответвления, отходящие от крупных сосудов под прямыми углами, могут получать непропорционально меньшее количество эритроцитов. Этот феномен, называемый скольжением плазмы, может объяснять тот факт, что гематокрит капиллярной крови постоянно на 25% ниже, чем в остальных частях тела.

 Критическое давление закрытия просвета сосудов. В жёстких трубках соотношение между давлением и скоростью потока гомогенной жидкости линейное, в сосудах такой зависимости нет. Если давление в мелких сосудах уменьшается, то кровоток останавливается раньше, чем давление упадёт до нуля. Это касается прежде всего давления, продвигающего эритроциты через капилляры, диаметр которых меньше размеров эритроцитов. Ткани, окружающие сосуды, оказывают на них постоянное небольшое давление. При понижении внутрисосудистого давления ниже тканевого давления сосуды спадаются. Давление, при котором кровоток прекращается, называют критическим давлением закрытия.

 Растяжимость и податливость сосудов. Все сосуды растяжимы. Это свойство играет важную роль в кровообращении. Так, растяжимость артерий способствует формированию непрерывного тока крови (перфузии) через систему мелких сосудов в тканях. Из всех сосудов наиболее растяжимы вены. Небольшое повышение венозного давления приводит к депонированию значительного количества крови, обеспечивая ёмкостную (аккумулирующую) функцию венозной системы. Растяжимость сосудов определяют как увеличение объёма в ответ на повышение давления, выраженное в миллиметрах ртутного столба. Если давление в 1 мм рт.ст. вызывает в кровеносном сосуде, содержащем 10 мл крови, увеличение этого объёма на 1 мл, то растяжимость будет составлять 0,1 на 1 мм рт.ст. (10% на 1 мм рт.ст.).

 На практике важнее знать общее количество сосудов, способных резервировать кровь из кровообращения в ответ на каждый миллиметр ртутного столба повышенного давления, чем просто растяжимость отдельных сосудов. Такое понятие, характеризующее эластичность сосудистой стенки, называют податливостью. Чем выше податливость, тем больше растяжимость кровеносных сосудов.

 Растяжимость и податливость различаются между собой. Сосуды, имеющие высокую растяжимость, но имеющие малый объём, могут иметь намного меньшую податливость, чем менее растяжимые сосуды, имеющие большой объём. Так, податливость вены в 24 раза больше, чем в соответствующей артерии, потому что она в 8 раз растяжимее и имеет в 3 раза больший объём. Единица измерения податливости — 1 мл/мм рт.ст.

 Стресс-релаксация. В венозном сосудистом русле проявляется так называемый феномен стресс-релаксации, свойственный всем ГМК. Введённый внутривенно значительный объём крови вызывает немедленное эластическое растяжение вен, а ГМК после быстрой релаксации начинают медленно возвращаться к исходной длине. Стресс-релаксация, увеличивая податливость, служит механизмом для поддержания адекватного кровообращения при переливании больших объёмов крови. Этот же механизм работает и в обратном направлении, автоматически приспосабливая кровообращение к деятельности в условиях уменьшенного объёма крови после большой кровопотери. Важно учитывать, что в состоянии покоя более 60% ОЦК находится в венозной системе. При переливании крови менее 1% её объёма распределяется в артериальной системе (системе высокого давления), а вся остальная кровь распределяется в венозной системе, малом круге кровообращения, предсердиях и правом желудочке (системе низкого давления).
1   2   3   4   5   6   7   8   9   10


написать администратору сайта