Главная страница
Навигация по странице:

  • 7.13 Механизм поглощения

  • курс физики том 4. Курс физики ТОМ 4. Т. В. Стоянова, на. Тупицкая, Ю. И. Кузьмин курс физики том 4 квантовая механика. Физика твёрдого тела. Атомная и ядерная физика учебник санкт петербург 2014 удк 539. 1 530. 145(075. 8)


    Скачать 2.93 Mb.
    НазваниеТ. В. Стоянова, на. Тупицкая, Ю. И. Кузьмин курс физики том 4 квантовая механика. Физика твёрдого тела. Атомная и ядерная физика учебник санкт петербург 2014 удк 539. 1 530. 145(075. 8)
    Анкоркурс физики том 4
    Дата22.04.2023
    Размер2.93 Mb.
    Формат файлаpdf
    Имя файлаКурс физики ТОМ 4.pdf
    ТипУчебник
    #1081332
    страница17 из 18
    1   ...   10   11   12   13   14   15   16   17   18

    7.12 Гамма излучение ядер
    Гамма-излучением называются электромагнитное излучение, испускае- моеядрами атомов при переходах ядер из возбужденного состояние в основное (или в менее возбужденное, а также в процессе ядерных превращений. Различают жесткое излучение, испускаемое ядрами при переходе из возбужденного состояния в основное, и мягкое излучение, которое испускается при перестройке электронных оболочек атома в результате так называемого электронного захвата (К-захвата). Фотоны жесткого

    - излучения имеют энергию от сотен тысяч электрон-вольт до нескольких мегаэлектрон-вольт. В каждом акте перехода ядро излучает один

    - квант В связи с дискретностью энергетических уровней ядра излучение имеет линейчатый спектр. Частоты

    - квантов связаны с разностью энергий условием частот Бора. Поясним происхождение мягкого- излучения. Процесс превращения одного из внутриядерных протонов в нейтрон происходит либо с возникновением позитрона, либо без возникновения позитрона с захватом ядром одного из ближайших к нему атомных электронов. Так кaк ближайшими к ядру являются электроны К-слоя, то последний вид излучения называют К-
    захватом. После К-захвата электронная оболочка атома оказывается в возбу-
    Рис. 7.30 Зависимость яркости желтого светодиода от температуры активной области
    0,1 1
    10
    -40 10 яркость, от не д.
    температура, о
    С
    жденном состоянии. Возврат в нормальное состояние осуществляется в результате перехода одного из электронов внешних слоев на вакантное место в
    К-слое, вследствие чего возникает характеристическое излучение К-серии. Возможно излучение

    - квантов и твердыми телами, что подтверждается эффектом э. Этот эффект заключается в упругом испускании или поглощении

    - квантоватомными ядрами, связанными в твердом теле. В
    1958 году Мессбауэр предложил метод резкого уменьшения энергии отдачи ядру Т
    Я
    при испускании и при поглощении

    - лучей. Явление резонансного излучения (поглощения)


    - излучения без отдачи называется эффектом Мес-
    сбауэра. Резонансным поглощением

    - излучения ядрами называется поглощение ядром

    - фотонов такой частоты

    , что энергия h

    фотона равна разности энергий одного из возбуждённых и основного энергетических состояний ядра. Такая же частота будет у линии

    - фотона, излученного при переходе ядра из возбуждённого состояния ядра в нормальное. Идеей метода является использование излучающих и поглощающих ядер в связанном виде, те. в составе кристаллических решеток. Известно, что при достаточно низких температурах становятся возможными ядерные переходы без изменения энергетического состояния кристалла, тес передачей энергии упругим образом всему кристаллу в целом. Так как масса кристалла много больше массы ядра, то согласно закону сохранения импульса, потери на отдачу становятся чрезвычайно малыми. Поэтому процессы испускания и поглощения могут происходить практически без отдачи. Энергетическим состояниям атомных ядер приписывают вполне определенную энергию. Это не совсем правильно. Так, например, ядро изотопа иридия находится в возбужденном состоянии с энергией Е
    = 129 КэВ, из которого оно может перейти в основное состояние за счет испускания

    - кванта с периодом полураспада, равным
    

    10
    -10 с. Тогда согласно соотношению неопределенности энергия возбужденного состояния будет известна с точностью до
    6 19 10 34 10 6
    ,
    6 10 6
    ,
    1 10 28
    ,
    6 10 62
    ,
    6 2
















    h
    Е
    эВ. Чем меньше время жизни возбужденного состояния ядра, участвующего в

    - переходе, тем больше неопределенность в значении энергии возбужденного состояния. Последняя приводит к тому, что

    - излучение, испускаемое при переходе ядра из возбужденного состояния в основное, будет немоно- хроматическим, те. будет содержать не одну частоту излучения, а спектр. Эту не монохроматичность принято называть естественной шириной (Г) линии испускания- лучей. В рассматриваемом примере эта величина равна ГэВ. Это очень малая величина по сравнению с энергией

    - перехода Е = 129 КэВ. Относительная ширина линий Мессбауэра, равная в нашем примере 5



    Е
    Г
    , позволяет использовать этот эффект для измерения малых сдвигов энергии (частоты)

    - квантов, вызванных теми или иными воздействиями на излучающее или поглощающее ядро. В ядерной спектроскопии эффект Мёссбауэра используется для точных измерений энергетических уровней атомных ядер. Одним из впечатляющих применений метода стал эксперимент Паунда и
    Ребки, которые в 1960 г. измерили в лабораторных условиях гравитационное смещение гамма-квантов, предсказываемое общей теории относительности. При движении фотона в гравитационном поле его энергия изменяется на
    ∆W = −W(
    2 1
    2
    /
    ) c



    = -h

    (
    2 1
    2
    /
    ) c



    , где
    1

    и
    2

    - потенциалы гравитационного поля в точках 1 и 2. Знак минус указывает на то, что увеличение энергии фотона в гравитационном поле происходит в результате уменьшения его энергии W = hv:
    2
    / Относительное изменение частоты при прохождении фотоном гравитационной разности потенциалов
    :


    2
    /
    /
    c
    v
    v





    , здесь
    0



    , так что потенциал поля тяготения Солнца увеличивается по мере удаления от него. На поверхности Земли он больше, чем на поверхности Солнца. Следовательно,
    0
    /


    v
    v
    и все частоты линий Солнца изв зд, регистрируемые на Земле, сдвинуты к красному участку спектра. Этот эффект называется гравитационным красным смещением. Метод ядерного гамма-резонанса используется в физическом материаловедении, химии, минералогии и биологии (например, при анализе свойств Fe- содержащих групп в белках. Эффект поглощения излучения усиливают пут м обогащения образцам ссбауэровскими изотопами, повышая, например, содержание
    57
    Fe в пище подопытных животных. В минералогии эффект Мёссбаура применяется главным образом для определения структурного положения ионов Fe и определения степени окисления железа. На основе эффекта Мёссбауэра разработаны современные анализаторы для экологического мониторинга промышленных печей, позволяющие контролировать выброс тяжёлых металлов при сжигании топлива.
    7.13 Механизм поглощения

    - лучей. Позитрон Поглощение

    - лучей в среде в основном обусловлено тремя процессами фотоэффектом, комптоновским рассеянием и явлением образования элек- тронно-позитронных пар. Когда энергия

    - фотонов достигает примерно 0,1 МэВ, поглощение лучей в веществе происходит вследствие фотоэффекта - здесь электрон выбрасывается из глубинных слоев атома Кили, после чего происходит заполнение вакантного места с испусканием характеристического излучения. В поглощении

    - лучей с энергиями фотона порядка 0,5-2,0 МэВ существенную роль играет эффект Комптона. При исследовании установлено, что

    - фотоны с энергией в несколько мегаэлектрон-вольт мoгут поглощаться ядрами, переводя их в возбужденное состояние, причем обратный переход в основное состояние может сопровождаться выбросом внутриядерной частицы - нейтрона или протона. В 1934 г.
    Чадвик установил, что при облучении тяжелого водорода

    - лучами тория поглощение фотона (с энергией h

    = 2,2 МэВ) переводит ядро дейтрона в неустойчивое возбужденное состояние, которое завершается распадом на протон и нейтрон. Для фоторасщепления более тяжелых ядер требуются

    -фoтоны с энергией порядка 10 - 15 МэВ. Поглощение

    - фотонов с энергией порядка
    100 МэВ приводит к освобождению из ядер нескольких частиц. Поглощение- лучей при прохождении их через вещество можно описать экспоненциальным законом
    x
    e
    I
    I



    0
    , где

    - коэффициент поглощения x - толщина слоя вещество. Вместо линейного коэффициента поглощения

    берут массовые коэффициенты

    /

    , где

    – плотность вещества, а также коэффициенты, рассчитанные на 1 атом и на 1 электрон
    N
    A
    a





    , которые могут быть истолкованы как эффективные сечения для того или иного процесса. Позитрон. Под действием жестких

    - лучей, имеющих энергию кванта больше 1 МэВ, происходит рождение электронно-позитронных пар. Позитроны были открыты в 1932 году Андерсеном при исследовании им космических лучей. Впоследствии существование позитронов было подтверждено опытами, несвязанными с исследованием космических лучей. В 1933 г. Чэд- вик, Блеккет и Оккиалини обнаружили, что позитроны вылетают из свинцовой пластинки, облучаемой

    - лучами. При исследовании было установлено, что масса позитрона равна массе электрона, заряд позитрона вен заряду электрона по величине, но противоположен по знаку. Равны также их механические и (численно) магнитные спиновые моменты поз

    = I
    эл
    , поз
    =

    эл
    . Тот факт, что позитрон наблюдается только в исключительных условиях, объясняется весьма малой продолжительностью его жизни (порядка 10
    -6
    св атмосферном воздухе. За этот промежуток времени позитрон встречается с электроном вещества, и если энергия каждого из них не меньше 0,5 МэВ, они превращаются в два- кванта.

    7.14 Нейтроны и их прохождение через вещество Искусственное превращение ядер, вызванное бомбардировкой частиц, привело к открытию нового вида элементарной частицы - нейтрона. В 1930 году Боте и Беккер обратили внимание на то, что при бомбардировке

    - частицами бериллия (
    Ве
    9 4
    ) возникает излучение весьма большой проникающей способности, в несколько раз превышающей проникающую способность очень жестких

    - лучей. Вначале это излучение назвали бериллиевыми лучами. В 1932 г. Чэдвик доказал, что бериллиевые лучи представляют собой поток частиц, лишенных заряда и имеющих масс, близкую к массе протона эти частицы были названы нейтронами. Ядерная реакция в этом случае протекает в такой форме
    Ве
    9 Не С С 6
    +
    n
    1 На рис. 7.31 изображено устройство прибора для обнаружения нейтронов. Источником

    - частиц служит диск Д покрытый полонием. Нейтроны, испускаемые бериллием под влиянием бомбардировки

    - частицами, проходили через стенку камеры и проникали в ионизационную камеру, в которой они не вызывали ионизации, так как не имели своего заряда. Если перед окном камеры, поместить пластинку из парафина, то ионизация в камере возрастает, так как нейтроны, сталкиваясь с ядрами атомов водорода, содержащимися в парафине, передают им некоторое количество движения и сообщают скорость, достаточную для ионизации газа в ионизационной камере. Таким образом, ионизация в камере вызывается не нейтронами, а протонами, которые получили кинетическую энергию при упругих столкновениях с нейтронами. Опыт показывает, что при прохождении нейтронов через вещество возможно упругое рассеяние, неупругое рассеяние, захват. Упругим называется рассеяние без потери частицей (нейтроном) кинетической энергии. В некоторых веществах, для которых роль упругого рассеяния относительно высока, быстрый нейтрон теряет свою энергию в серии последовательных актов упругого соударения с ядрами вещества (замедление нейтронов. Процесс замедления продолжается до тех пор, пока кинетическая энергия нейтрона не сравняется с энергией теплового движения атомов замедляющего вещества. Такие нейтроны называются тепловыми. Дальнейшие столкновения тепловых нейтронов с атомами замедлителя не изменяют энергии нейтронов, а приводят к диффузии тепловых нейтронов в веществе до тех пор, пока они не поглотятся каким-либо ядром или не вылетят за пределы замедлителя. Упругое рассеяние используется при замедлении быстрых нейтронов в реакторах. Неупругим рассеянием нейтронов называется процесс, когда нейтрон, попадая в ядро, может перевести его в возбужденное состояние и снова выле-
    Рис. 7.31
    теть из ядра, но уже с меньшей энергией. При исследовании установлено, что для строго параллельного пучка число нейтронов

    N , прошедших слой х убывает с увеличением толщины слоя по экспоненциальному закону


    x
    e
    N
    N


    0
    . (7.64) Здесь
    0
    N - число нейтронов, регистрируемых детектором в первичном пучке


    - средняя длина свободного пути нейтрона в рассеивающем веществе. В настоящее время рассеяние и поглощение характеризуются не средней длиной, а эффективным сечением рассеяния

    , связанным с

    соотношением где

    - число ядер, рассеивающих нейтроны в единице объема. Подставляя это соотношение в (получим




    x
    e
    N
    N
    0 1
    (7.65) Произведение

    x имеет размерность ми представляет собой число ядер, приходящихся нам вещества. Обозначая

    x = n, перепишем формулу) в таком виде



    n
    e
    N
    N
    0 1
    , (7.66) Константа

    , имеющая размерность [

    ] = м, называется эффективным сечением рассеяния. Число ядер, прореагировавших за 1 с, характеризуют эффективным сечением ядра. Если центр налетающей частицы пройдет внутрь сечения

    , то столкновение частицы будет эффективным для ядерной реакции. Площадь

    нужно приписать ядру для того, чтобы можно было считать, что попадание частицы в диск этой площади вызовет ядерную реакцию. Вероятность р того, что налетающая частица вызовет превращение ядра, можно определить по формуле
    x
    p

    

    , где х - толщина мишени. Эффективное сечение ядра легко вычислить из последней формулы по числу налетающих частиц, вызывающих в среднем одно ядерное превращение в достаточно тонкой мишени. Одному ядру приходится приписывать разные эффективные сечения при различных значениях энергии налетающей частицы. Для реакций, вызываемых поглощением нейтронов с тепловыми скоростями, эффективное сечение ядра нередко в сотни тысяч раз превышает геометрическое сечение. Так например, поперечное сечение ядра кадмия для захвата медленных нейтронов при резонансном значении энергии нейтрона равном 0,176 эВ достигает величины

    = 7800

    10
    -28
    м (это эффективное сечение враз превышает геометрическое сечение ядра атома кадмия, но при увеличении энергии нейтронов всего на 0,2 эВ эффективное сечение кадмия уменьшается почтив раз.

    7.15 Термоядерные реакции Термоядерными называют реакции синтеза легких атомных ядер, протекающие при очень высоких температурах - от нескольких миллионов градусов до нескольких сотен миллионов градусов. Почему необходима такая высокая температура для протекания реакции слияния ядер атома Известно, что между ядерными частицами существуют и силы отталкивания и силы притяжения, причем силы отталкивания действуют и на далеких расстояниях между протонами, тогда как силы притяжения проявляются только при тесном сближении протонов и, превышая силы отталкивания, дают протонам возможность соединяться в ядро. Значит, для того чтобы протоны могли перепрыгнуть через барьер, которым "отгородилось" ядро, они должны иметь достаточно высокую энергию. Только в этом случае они смогут сблизиться на такие расстояния, при которых между ними уже действуют ядерные силы притяжения. Так, например, для слияния дейтронов необходимо их сближение до расстояния

    3

    10
    -15
    м.
    На этом расстоянии потенциальная энергия взаимодействия дейтронов равна 0,5 МэВ. Температура, необходимая для протекания данной реакции, должна быть порядка T

    2

    10 9
    К. Гораздо легче осуществима реакция слияния ядер дейтерия и трития. Расчеты показывают, что общее количество дейтерия в океанах составляет
    5

    10 13
    т. Содержание трития в обычной воде совершенно ничтожно, но ученые нашли эффективный способ получать его искусственно из довольно распространенного элемента - лития. Температура, необходимая для протекания термоядерной реакции трития и дейтерия, должна быть порядка ста миллионов градусов. Искусственная термоядерная реакция была впервые осуществлена в Советском Союзе в виде взрыва мощной водородной бомбы. Реакция синтеза изотопов водорода протекает следующим образом Н 1
    + Н Не 2
    +
    1 0
    n +17,6 МэВ. Высокая температура, необходимая для быстрого и эффективного протекания реакции, практически достигается взрывом атомной бомбы, содержащейся в водородной бомбе в качестве взрывателя. При образовании альфа- частицы и нейтрона из дейтерия и трития высвобождается энергия 17,6 МэВ. Энергия, выделяющаяся при взрыве одной водородной бомбы, эквивалентна энергии взрыва десятков миллионов обычных взрывчатых веществ. Значительно большая энергия освобождается при реакции синтеза легкого водорода с тритием с образованием ядра гелия и излучения Н Н Не 2
    +

    + МэВ. Для выработки сверхтяжелого изотопа водорода
    Н
    3 1
    , применяемого в водородной бомбе, используют ядерные реакторы, c помощью которых получают интенсивные потоки медленных нейтронов, необходимые для осуществления реакции
    Li
    6 3
    +
    1 0
    n

    Li
    7 Не 2
    + Н 1
    Полученный таким образом тритий радиоактивен ииспытывает

    - превращение (Н Не 2
    +
    0 1
    e

    ). Если полученный изотоп гелия облучать тепловыми нейтронами, то снова образуется тритий Не 2
    +
    1 Н 1
    +
    1 1
    p Следует заметить, что производство изотопов водорода сопряжено с большими затратами средств. Haпpимер, расходы на строительство завод по производству трития в США на берегу реки Саванны превысили стоимость всех заводов и предприятий такой крупной корпорации, как "Дженерал мо- торс. Особый интерес представляет возможность получения для народного хозяйства энергии за счет управляемой термоядерной реакции. В последние годы большое число исследований направлено на изыскание способов, которые позволяли бы стабилизировать термоядерные реакции и управлять ими. Для осуществления управляемых термоядерных реакций необходимо решить следующие задачи во-первых, предстоит получить (конечно, не в условиях взрыва) температуру в 350 миллионов градусов - это минимальная температура, начиная с которой реакция синтеза изотопов водopoдa становится энергетически выгодной во-вторых, надо обеспечить теплоизоляцию гopячeй плазмы от стенок прибора. Это необходимо не только для уменьшения потерь тепла, но и потому, что даже самые огнеупорные материалы не останутся твердыми при температуре термоядерной реакции. Метод преодоления этой трудности заключается в изолировании горячей плазмы от стенок прибора с помощью магнитного поля. С целью разогрева плазмы до сверхвысокой температуры через нее пропускается электрическая искра от мощных электрических разрядов. Для решения этой задачи нет нужды строить сверхмощные электростанции, достаточно иметь аппараты, позволяющие получать высокие напряжения и одновременно сильные токи в течение малого времени. Такие приборы с мощными трансформаторами и конденсаторными батареями позволяют получить плазму стоком в миллионы ампер. Это настоящая искусственно созданная молния с тонким, ослепительно сверкающим шнуром (в плазме ток идет по одному каналу, а не "рыскает" в поисках легкого пути, как в молнии. Чтобы понять, почему разряд имеет форму шнура, следует обратиться копыту взаимодействия параллельных проводников стоками одинакового направления. В этом опыте проводники немедленно притягивались друг к другу. Тоже происходит ив плазме под действием поля разряда ее частицы начинают двигаться параллельно друг другу, и вызванные этим движением магнитные поля сближают частицы. Благодаря гигантским токам в разряде сближение плазменных частиц происходит почти молниеносно частицы плазмы за миллионные доли секунды собираются по оси разряда в центре цилиндра, образуя тоненькую нить — так называемый плазменный шнур. Магнитное поле вокруг канала, по которому течет ток, разо-
    9
    Плазма — это состояние вещества с высокой степенью ионизации, при котором необязательно, чтобы все электроны были свободными, а ядра — "оголенными. Степень "оголенности" ядер в атомах может быть самой различной.
    гревающий плазму, имеет такое же строение, как магнитное поле обычного линейного тока (рис. 7.32). Заряженные частицы, из которых состоит плазма, двигаясь в сторону от канала разряда, отклоняются этим магнитным полем и вoзвpaщaютcя обратно. Таким образом, стенки прибора защищаются от соприкосновения с частицами раскаленной плазмы, а частицы оберегаются от потерь тепла. Получается, что плазма, разогретая электрическим разрядом, сама себя изолирует от стенок прибора. Но это длится только мгновение. Температура частиц, несущихся коси прибора, уже через несколько миллионных долей секунды повышается примерно до миллиона градусов. Колоссальное сжатие плазмы в шнуре при такой температуре вызывает в плазме ответные силы, разбрасывающие частицы плазмы и разрушающие самый шнур. Для устранения возникающих деформаций канала и для "укрощения" частиц плазмы создается внешнее продольное магнитное поле. Внешнее магнитное поле, введенное в плазму, позволяет повысить устойчивость плазменного шнура и тем самым удлинить его жизнь. Повышая напряжение, прилагаемое к электродами создавая сильное внешнее поле, удалось значительно повысить температуру плазмы в шнуре. Однако дальнейшее повышение температуры сказалось невозможным из-за наличия у камеры холодных электродов, которые служат для осуществления разряда, введения" тока в камеру и препятствуют нагреву плазмы. Стремясь к дальнейшей стабилизации и повышению температуры плазмы, устранили холодные электроды и свернули плазму в тор (баранку) (рис. 7.33). Позднее стали заключать плазму в камеру c металлическими стенками, отталкивающими ее частицы внутрь камеры здесь был использован принцип возбуждения вихревого магнитного поля в металлических стенках при перемещении плазменного шнура к стенке тора. Тороидальные камеры, позволяющие заключить плазму в магнитную ловушку, следует считать второй стадией работ по получению энергии при помощи термоядерной реакции. Вариантами таких установок являются советская камера "Альфа, американская установка "Стелларатор" и английская камера "3ета". В настоящее время в ряде стран ведутся интенсивные работы по управлению термоядерными реакциями. Выводы Седьмая глава содержит дополнительный материал практически ко всем главам учебника, который предназначен для студентов изучающих физику Рис. 7.33 Рис. 7.32
    четыре семестра, а также самостоятельно интересующихся применением фундаментальных физических законов и явлений в современных научных исследованиях и промышленности. В этой главе показано, как опираясь на полученные знания в области квантовой механики и атомной физики методом парамагнитного резонанса можно исследовать строение вещества, предсказывая его реакционную способность, определяя количество неспаренных электронов в молекуле данного вещества. Продемонстрировано, как используя знания основ квантовой статистики можно проанализировать электрические свойства различных материалов, что может оказаться важным для высокотехнологичных промышленных производств. Объяснён механизм сверхпроводимости. Задача внедрения сверхпроводящих материалов в промышленность является крайне актуальной сточки зрения развития энергосберегающих технологий. Сделан акцент на практическое применение законов, изложенных в основном курсе физики. Так эффекты Зеебека и Пельтье рассмотрены сточки зрения их применения в датчиких температуры, термохолодильниках и других устройствах. Даны основные представления о работе солнечных генераторов, полупроводниковых диодов и приборов, в основе которых лежит гетеропереход. В этой главе, студенты знакомятся с основами термоядерного синтеза и перспективами термоядерной энергетики. Описанный здесь метод ядерного гамма-резонанса уже нашёл широкое применение в физическом материаловедении, химии, минералогии, биологии и экологии, при этом перспективы его применения далеко не исчерпаны. СВЯЗЬ ФУНДАМЕНТАЛЬНОГО ОБРАЗОВАНИЯ С СОВРЕМЕННЫМИ МЕТОДАМИ ИССЛЕДОВАНИЯ Любое качественное образование должно иметь прочную основу. В технической области ведущая роль в формировании фундаментальной основы знаний принадлежит физике. Физика объясняет объективные законы, существующие в природе. Физические законы устанавливаются на основе анализа гипотез и обобщения опытных фактов. Развитие техники способствует развитию фундаментальных основ физики, развитие физики приводит к новым техническим решениям. Фундаментальные физические законы, открытые в последние столетия, легли в основу новых направлений развития промышленности, таких как, ядерная энергетика, электроника, нанотехнологии. По мере развития физики, возникают новые методы исследований. На кафедре физики разработана методическая база к лабораторным работам, позволяющая студентам получить основные навыки работы с приборами ставшими традиционными и современными, научиться основам постановки, проведения, обработки результатов и анализа эксперимента. Лабораторная база служит также для более глубокого понимания фундаментальных законов, осознания возможности их применения на практике и освоения современных методов исследования. Представленные в лаборатории работы поддерживают практически все изучаемые в рамках, установленных для различных направлений программ разделы физики квантовая механика, элементы квантовой статистики, основы атомной физики, элементы физики твёрдого тела. Для более глубокого понимания физических процессов при подготовке к лабораторным работам в учебнике даны дополнительные темы, где более детально освещены вопросы, изучаемые в рамках лабораторных работ, что должно существенно облегчить самостоятельную работу студентов по теоретической подготовке к лабораторному эксперименту. Работы Исследование теплоемкости металлов, Исследование тепло и электропроводности металлов, Исследование электропроводности твёрдых материалов от температуры позволяют рассмотреть известные со школьного курса большинству студентов физические величины теплоёмкость и электропроводность не только сточки зрения классической теории, но и квантовой, понять границы применения классических представлений, приобрести навыки самостоятельной работы с современными приборами. Физика твёрдого тела стоит на переднем рубеже развития промышленности. Современную технику сложно представить без электроники, позволяющей облегчить работу с установками, приборами и машинами. Электронные приборы нас окружают ив повседневной жизни. В основе электроники лежат фундаментальные законы физики твёрдого тела, атомной и квантовой физики. Работы Исследование
    1   ...   10   11   12   13   14   15   16   17   18


    написать администратору сайта