Главная страница
Навигация по странице:

  • 5.3 Ядерные реакции 5.3.1 Классификация ядерных реакций

  • курс физики том 4. Курс физики ТОМ 4. Т. В. Стоянова, на. Тупицкая, Ю. И. Кузьмин курс физики том 4 квантовая механика. Физика твёрдого тела. Атомная и ядерная физика учебник санкт петербург 2014 удк 539. 1 530. 145(075. 8)


    Скачать 2.93 Mb.
    НазваниеТ. В. Стоянова, на. Тупицкая, Ю. И. Кузьмин курс физики том 4 квантовая механика. Физика твёрдого тела. Атомная и ядерная физика учебник санкт петербург 2014 удк 539. 1 530. 145(075. 8)
    Анкоркурс физики том 4
    Дата22.04.2023
    Размер2.93 Mb.
    Формат файлаpdf
    Имя файлаКурс физики ТОМ 4.pdf
    ТипУчебник
    #1081332
    страница9 из 18
    1   ...   5   6   7   8   9   10   11   12   ...   18

    5.2.2 Закон радиоактивного распада Наблюдения над радиоактивными веществами показали, что они самопроизвольно распадаются. Причем на распад не влияют ни температура, ни давление, ни химические процессы. Исследованием установлено, что число атомов dN, распавшихся з промежуток времени dt, пропорционально длительности этого промежутка времени и числу нераспавшихся атомов N:
    Ndt
    dN



    ,(5.2)
    где

    - постоянная распада. Из соотношения (5.2) следует, что постоянная распада

    представляет собой относительную убыль числа ядер, распавшихся за единицу времени. Знак минус указывает, что число нераспавшихся атомов
    N со временем убывает. Разделяя переменные в равенстве (5.2), получим Интегрируя полученное уравнение и обозначая начальное число атомов через N
    0
    ,






    t
    t
    N
    N
    t
    N
    dN
    0 или
    t
    N
    N
    n



    0

    , откуда получаем экспоненциальный закон радиоактивного распада
    )
    exp(
    0
    t
    N
    N



    , где N
    0
    - количество атомов в начальный момент времени, N - количество не распавшихся атомов в момент времени t. Следовательно, число не распавшихся ядер убывает со временем по экспоненте. Время, за которое распадается половина первоначального количества ядер, называется периодом полураспада. Рассматривая это уравнение для момента времени t, равного периоду полураспада
    2
    /
    1

    , когда N = 1/2 N
    o
    , находим) Период полураспада является характеристикой устойчивости ядер относительно распада. Для радия период полураспада равен 1590 лет, для радона - 3,8 дня, для полония -1,5

    10
    -4
    с. Суммарная продолжительность жизни dN ядер равна Проинтегрируем полученное равенство













    1 1
    0 0
    0
    tdt
    e
    Ntdt
    N
    t
    . (5.4) Величина, обратная постоянной радиоактивного распада, определяет среднюю продолжительность жизни радиоактивного ядра Сопоставив выражения) и (5.4), можно увидеть, что средняя продолжительность жизни радиоактивного ядра равна
    2 Число распадов ядер вещества в единицу времени называется активностью вещества




    t
    A
    t
    N
    N
    dt
    dN
    A











    exp exp
    0 0
    Активность в системе СИ измеряется в беккерелях: [A] = Бк. Внесистемная единица – кюри (К. К = 3,7·10 10
    Бк. Удельной активностью вещества называют активность, отнесённую к единице массы вещества.
    5.2.3 Методы регистрации заряженных частиц Для регистрации движения заряженных элементарных частиц применяется камера Вильсона -
    Скобельцына, которая схематично изображена на рис. 5.4 в виде цилиндрического сосуда. При открывании крана К пространство V под поршнем П соединяется с резервуаром Риз которого откачан воздух происходит внезапное адиабатическое расширение воздуха в сосуде С, температура понижается и пространство оказывается пересыщенным парами жидкости. Если вслед за расширением через камеру пролетит ионизирующая частица, то вокруг нее как центра конденсации будут выделяться капельки тумана и при соответствующем освещении траектория частицы станет заметной для глаза наблюдателя в виде узкой туманной полосы. Для того чтобы удалить ионы, уже существовавшие в камере до проведения опыта, к камере подводится напряжение от батареи Б. Траектории заряженных частиц можно фотографировать. В последнее время были разработаны камеры с непрерывным движением поршня и автоматически управляемыми счетчиками. Счетчик Гейгера широко применяется в ядерной физике, сего помощью можно усиливать слабые первичные ионизационные процессы и производить регистрацию заряженных частиц, попадающих в камеру. Счетчик Гейгера состоит из металлической камеры (рис. 5.5), на оси которой расположено острие, укрепленное на изоляторе. Между острием и стенками камеры создается разность потенциалов, подаваемая от высоковольтной батареи. Острие счетчика соединяют с чувствительным электрометром, который имеет нить, расположенную между электродами. Падение потенциала на высокоомном сопротивлении R (

    10 8 Ом, возникающее при прохождении заряженной частицы через счетчик, затем усиливается и регистрируется при помощи измерительного прибора. Эффект усиления первичных ионизационных процессов основан на неравномерности электрического поля вблизи острия. Вследствие большого градиента поля ионы, воз-
    +
    R
    Рис. 5.5 Рис. 5.4
    никшие в камере под действием быстрой частицы, испытывают сильное ускорение вблизи острия и создают путем ударной ионизации лавину ионов, на которую реагирует измерительный прибор. Счетчики с острием называют счетчиками Гейгера, а счетчики с тонкой нитью (вместо острия) — счетчиками Гейгера—Мюллера. Счетчик, работающий при определенной разности потенциалов, когда ток пропорционален числу первичных пар ионов, называется пропорциональным. В дальнейшем для регистрации путей быстрых частиц стал широко применяться метод толстослойных фотопластинок, впервые предложенный Л. В. Мысовским. Изготовив несколько типов пластинок с различной чувствительностью, можно регистрировать

    - частицы, протоны, дейтроны, мезоны, электроны и др.
    5.3 Ядерные реакции
    5.3.1 Классификация ядерных реакций
    Ядерными реакциями называются превращения атомных ядер, вызванные их взаимодействиями с элементарными частицами или друг с другом. Известны различные типы реакций. В зависимости от частиц, вызывающих реакции, их можно разделить на реакции под действием заряженных частиц, под действием нейтронов и квантов. Искусственное расщепление атомных ядер может быть осуществлено путем бомбардировки ядер различных элементов частицами, протонами (
    1 1
    p
    ), дейтронами ( H
    2 1
    ), нейтронами (
    1 0
    n
    ), фотонами (

    ). История открытия деления ядер начинается с опытов Ферми по изучению искусственной радиоактивности, возникающей под действием нейтронов. Облучая в 1934 году уран, Ферми обнаружил у образующихся радиоактивных продуктов не один, а несколько периодов полураспада. Было установлено, что при делении тяжелого ядра освобождается большая часть энергии в форме кинетической энергии осколков деления, причем оказываются, что эти осколки являются

    - радиоактивными и могут испускать нейтроны. В 1919 году Резерфорд, подвергая различные элементы (азот, алюминий и др) бомбардировке

    - частицами, обнаружил в камере Вильсона у некоторых следов (рис.
    5.6) наличие излома (вилки, причем одна часть вилки оставляла жирный следа другая - слабый. Исследованием было установлено, что слабый след соответствовал следу протона, выбитого из ядра азота, а жирный след - новому ядру (
    O
    17 8
    ), получившемуся в результате расщепления ядра азота. Уравнение ядерной реакции в данном случае протекает в следующей форме Не 1
    17 8
    14 7
    4 Рис. 5.6
    Подсчеты показали, что миллион

    - частиц вызывает pacпад примерно
    20 ядер азота (400000 выстрелов дали 8 попаданий. Последующими опытами с

    - частицами удалось искусственно разрушить ядра всех легких элементов - от б до калия, за исключением углерода и кислорода. На основании теории ядра можно считать, что процесс pacщепления ядра азота

    - частицами состоит из двух этапов. Первый заключается в захвате

    - частицы ядром азота, приводящим к образованию так называемого компа- унд-ядра; второй - во внезапном распаде компаунд-ядра на две частицы, одна из которых представляет собой протон. Уравнение ядерной реакции для этого процесса можно записать так Не 1
    17 8
    18 9
    14 7
    4 2
    )
    (




    . Протоны имеют в 4 раза меньшую массу, чем

    - частицы, а заряд их меньше заряда

    - частицы в два з. Поэтому во многих случаях протоны оказываются более эффективными снарядами, чем

    - частицы. Отсюда следует, что кулоновские силы отталкивания, действующие на заряженную частицу при приближении ее к ядру, будут в два раза меньше в случае протона, чем в случае

    - частицы. При бомбардировке ядер лития протонами ядерная реакция протекает в такой форме
    Не
    Н
    Li
    4 2
    1 1
    7 Полученные таким путем частицы вылетали из ядра лития, оставляя пробег в 8,4 см,
    что соответствует энергии 8,6 МэВ. Энергия бомбардирующего протона была paвнa 0,125 МэВ. Точные значения масс (масс покоя) атомов, участвующих в этой реакции, определяются из следующих данных
     м 0078
    ,
    8 02634
    ,
    8 0039
    ,
    4 2
    00812
    ,
    1 01822
    ,
    7
    ]
    2
    (
    [
    1 1
    7 Можно рассчитать увеличение кинетической энергии частиц, вылетающих при указанной реакции, пользуясь законом взаимосвязи массы и энергии

    E
    кин
    = 931·0,01854 = 17,25 МэВ. Увеличение кинетической энергии по полученным данным оказалось равным (в пределах точности измерений)

    E
    кин
    = 2·8,6 - 0,125 = 17,1 МэВ. При бомбардировке некоторых атомных ядер дейтронами, те. ядрами тяжелого изотопа водорода Н 1
    , получаются мощные потоки нейтронов. Так, например, при бомбардировке дейтронами бериллия получается следующая реакция
    n
    В
    Н
    Ве
    1 0
    10 5
    2 1
    9 Ядерная реакция при бомбардировке азота
    N
    14 7
    нейтронами, возникающими в атмосфере под действием космических лучей, идет по уравнению
    C
    H
    n
    N
    14 6
    1 1
    1 0
    14 7



    ,
    гдe
    C
    14 6
    - изотоп углерода. Реакции, протекающие под действием

    - лучей, называются ядерным фотоэффектом. Необходимым условием их осуществления является превышение энергии

    - кванта над энергией связи нуклона в ядре Н 1
    1 0
    2 1




    . В результате фоторасщепления дейтрона были обнаружены протоны с энергией порядка 0,2 МэВ, но так как масса нейтрона приблизительно равна массе протона, то и энергия, уносимая нейтроном, составляет примерно
    0,2 МэВ. Приведем еще один пример реакции расщепления

    - лучами ядра бериллия Общие закономерности ядерных реакций При протекании ядерных реакций выполняются следующие законы сохранения электрического заряда и числа нуклонов, сохранения энергии и импульса, сохранения момента импульса, сохранения четности и изотопического спина. Справедливость закона сохранения электрического заряда и числа нуклонов можно проверить на рассмотренных ядерных реакциях. Иллюстрация остальных закономерностей, выполняемых при ядерных превращениях, выходит за рамки данного курса. Закон сохранения энергии для ядерной реакции может быть записан в виде Е

    = E
    2
    , где Е и Е - энергии исходных и конечных продуктов реакции. В общем случае, когда Е


    Е
    2
    ,разность ЕЕ называется энергией ядерной реакции и обозначается буквой Q:
    Q = E
    1
    - E
    2
    = E
    кин2
    - E
    кин1
    , где E
    кин2
    и E
    кин1
    - кинетические энергии частиц. При Q > 0 реакции сопровождаются выделением кинетической энергии за счет уменьшения энергии покоя и называются экзотермическими Примером является реакция
    Не
    n
    Н
    Н
    3 2
    1 0
    2 1
    2 1



    , в которой высвобождается в виде кинетической энергии продуктов реакции энергия ядерной реакции Q = 3,25 МэВ. При Q < 0 реакции идут с поглощением энергии и называются эндотермическими они могут идти только при достаточно высокой кинетической энергии падающей частицы. Случаю Q = 0 соответствует упругое рассеяние E
    кин1
    = Е
    кин2
    , ЕЕ, те. сохраняется не только полная энергия, но и кинетическая. В этом случае происходит перераспределение кинетической энергии между сталкивающимися частицами. Примером эндотермической реакции может быть следующая
    р
    О
    N
    Не
    1 1
    17 8
    14 7
    4 2



    Интересно рассмотреть реакции образования новых элементов, которых не было в таблице Менделеева. В настоящее время они отсутствуют в природе, но могyт быть получены искусственно в результате ядерных превращений. Рассмотрим, например, реакции образования трансурановых элементов. Периодическая система заканчивается м элементом — ураном. Это не означает, что в природе принципиально невозможно существование элементов с Z > 92, а обусловлено тем,
    что с уменьшением периодов

    - и

    - распада у этих элементов происходит caмoпpoизвoльнoe (спонтанное) деление ядер с ростом порядкового номера в периодической таблице Z. При облучении тяжелых ядер нейтронами и заряженными частицами получены ядра, заряд которых превышает 92, те. ядра элементов, которых не было в таблице Менделеева, но которые могут быть внесены в нее за ураном, поэтому эти элементы и получили название трансурановых (нептуний Np, плутоний Р, америций Am и др. При облучении
    U
    238 92
    медленными нейтронами образуется изотоп урана
    U
    239 92
    , который в результате

    -
    - распада (Тмин) превращается в изотоп нептуния
    Np
    239 93
    , а последний в результате распада (Т
    = 2,33 дня) превращается в изотоп плутония
    Pu
    239 94
    по реакциям
    U
    238 92
    +
    1 0
    n

    U
    239 92
    ;
    U
    239 92

    0 1
    e

    +
    Np
    239 93
    ;
    Np
    239 93

    0 1
    e

    +
    Pu
    239 Следует заметить, что все трансурановые элементы образуют группу элементов, близких по химическим свойствам.
    5.3.3 Деление ядер. Цепные ядерные реакции В 1938 году Ган и Штрассман точным радиохимическом анализом доказали, что при облучении урана нейтронами образуется элемент из середины периодической системы
    Ba
    137 56
    — химический аналог
    Ra
    226 88
    . В 1939 году советские физики Г.Н. Флеров и КА. Петржак обнаружили самопроизвольное деление ядер урана, которое сопровождалось выделением огромной энергии. Так как средняя энергия связи, рассчитанная на один нуклон, для ядер из середины периодической системы примерно на 0,8 МэВ больше энергии связи для урана, то энергия, освобождающаяся при делении ядра н,
    Q = 238

    0,8

    200 МэВ. Подавляющая часть энергии деления освобождается в форме кинетической энергии осколков, образовавшихся после деления ядер на две части. Величина кулоновской энергии двух осколков, находящихся на расстоянии
    r = r
    1
    +r
    2
    (r
    1 и r
    2
    - радиусы ядер осколков, равна (в системе СИ
    r
    e
    Z
    Z
    E
    k
    0 2
    2 Радиусы ядер осколков могут быть вычислены по формуле радиуса ядрам Считая, что
    46 2
    92 2
    1



    Z
    Z
    ,
    2 1
    r
    r

    (
    119 2
    238 2
    1



    A
    A
    ), получим
    эВ
    Е
    k
    200 4
    10 4
    ,
    1 119 10 85
    ,
    8 2
    14
    ,
    3 10 25
    ,
    6
    )
    10 6
    ,
    1
    (
    46 15 3
    12 12 19 те. величину такого же порядка, как и Q. Более точный расчет показывает, что кинетическая энергия осколков равна 180 МэВ. На долю электронов при

    -pacпаде и излучении падает
    10 МэВ, и 10 МэВ приходится на долю антинейтрино, так что общая энергия, выделяемая при делении ядер урана, равна 200 МэВ. При делении ядер вылетает несколько нейтронов, которые при соответствующей концентрации атомов смогут вызвать новое деление соседних ядер, сопровождающееся выделением новой порции энергии, и образование новых нейтронов. Если при одном акте выделения возникает больше одного нейтрона, тов принципе становится возможным нарастающий процесс цепной ядерной реакции деления в массе урана. В естественном уране имеются два изотопа -
    U
    238 92
    и
    U
    235 92
    , причем главную массу составляет
    U
    238 92
    , а урана
    U
    235 92
    содержится около 0,7%. Исследования показали, что
    U
    235 92
    делится под действием медленных (тепловых, а также быстрых нейтронов, в то время как
    U
    238 92
    делится только под дeйcтвиeм быстрых нейтронов. Исследования природы ядер - осколков, образующихся при делении ядер урана, позволили обнаружить до 60 вариантов деления. В качестве примера приведем одну реакцию деления
    U
    235 92
    +
    1 0
    n

    U
    236 При захвате нейтрона ядром
    U
    235 92
    образуется неустойчивое ядро
    U
    236 92
    , которое распадается на две части
    U
    236 Те 52
    +
    Zr
    97 40
    +2
    1 0
    n Образующиеся в результате деления теллур и цирконий являются радиоактивными и через ряд радиоактивных превращений переходят в стабильные ядра изотопов
    Ba
    137 56
    и
    Mo
    97 Изотоп урана
    U
    236 92
    может распадаться на другие два осколка, например
    U
    236 92

    Sr
    94 38
    +
    Xe
    140 54
    +2
    1 0
    n Образовавшиеся ядра стронция и ксенона содержат избыточное число нейтронов и поэтому являются радиоактивными. После

    - распада они превращаются в стабильные ядра циркония и цезия. Схема деления атомного ядра
    U
    235 92
    приведена на рис. 5.7. Нейтроны, выделяющиеся при делении одного ядра, попадают в другие ядра и вызывают их деление, также сопровождающееся выделением нейтронов последние вызывают деление в следующих ядрах и т. д. Если такой процесс ничем не ограничивается, то происходит ядерный (или атомный) взрыв. Если же размножения нейтронов не происходит, так как они рассеиваются в окружающее пространство, либо поглощаются примесями, то цепная реакция не происходит. Для развития цепной реакции необходимо, чтобы масса урана была не меньше некоторой критической массы и чтобы посторонних ядер, которые поглощают нейтроны без деления, было возможно меньше. Поэтому в атомных бомбах применяются чистые изoтoпы
    U
    235 92
    и
    Pu
    239 94
    без примеси
    U
    238 92
    , яд которых делятся только при захвате быстрых нейтронов. Критической массой радиоактивного вещества называют массу, в которой число образующихся нейтронов равно или немного больше числа нейтронов, рассеивающихся через поверхность этой массы вещества. Известно, что масса вещества, имеющего форму шара, пропорциональна объему
    3 3
    4
    R
    V


    , следовательно, она пропорциональна кубу радиуса. Поэтому число рождающихся нейтронов возрастает пропорционально R
    3
    , а число нейтронов, рассеянных этой массой, пропорционально площади поверхности
    S = 4

    R
    2
    , те. пропорционально С увеличением массы может наступить состояние, пи котором число вновь появляющихся нейтронов будет paвно числу рассеивающихся через поверхность радиоактивного вещества с этого момента масса вещества становится критической ив ней развивается цепная реакция. Одной из важных черт цепной реакции является скорость ее развития, зависящая, помимо коэффициента размножения нейтронов, от среднего времени между двумя последовательными актами деления. Если n - число нейтронов в данном звене цепной реакции, тов следующем звене их будет nk. Прирост dn числа нейтронов заодно поколение
    dn = kn – n = n(k-1), тогда скорость развития цепной реакции После интегрирования будем иметь
    t
    k
    e
    n
    n



    1 где n
    0
    - число нейтронов в момент t = 0; n - число нейтронов в момент До взрыва атомной бомбы вся масса атомного горючего разделена на части, каждая из которых меньше критической величины. Для взрыва эти части при помощи особого устройства соединяются водно целое.
    4
    На этом принципе основана атомная бомба. Рис. 5.7
    При ядерных реакциях примерно 1% нейтронов выделяется с запаздыванием по отношению к моменту деления, достигающему 1 мин. Запаздывающие нейтроны дают возможность управлять реакцией деления в энергетических ядерных реакторах. В настоящее время создано большое количество ядерных реакторов, в которых используются изотопы урана и плутония. Следует заметить, что при нечетном числе нейтронов в ядре деление ядер вызывается как быстрыми, таки тепловыми нейтронами, а при четном числе нейтронов - только быстрыми нейтронами (правило Бора-Уиллера). Схема реактора, работающего на медленных нейтронах, приведена на рис. 5.8. Здесь U - урановые стержни, обогащенные изотопом
    U
    235 92
    , С - графит, Б - бетонная защита от радиоактивных излучений, Cd - кадмиевый стержень, Со - отражатель (графитовая оболочка. Работа реактора происходит следующим образом. Ядра атомов
    U
    235 92
    делятся, вследствие чего выделяется энергия и происходит вылет новых нейтронов. Для того, чтобы нейтроны не поглощались ураном
    U
    238 92
    , урановые стержни помещены в каналы, проделанные в графите. Графит замедляет нейтроны до тепловых скоростей (те. до значений энергии ниже 5 эВ поэтому, попадая в другой или в тот же урановый стержень, они почти не поглощаются ураном
    U
    238 92
    и производят деление урана
    U
    235 92
    . Схема устройства атомной электростанции показана на рис. 5.9. Для возникновения цепной реакции необходимо, чтобы коэффициент размножения нейтронов k был больше единицы. Коэффициентом размножения называют отношение числа нейтронов последующего поколения n
    2
    к числу нейтронов предшествующего поколения n
    1
    , возникающих в звене реакции
    1 Прицепная реакция начинается, при k < 1 она затухает. Величина коэффициента размножения зависит от размеров установки, а также от скорости нарастания реакции. Роль paзмepов установки очевидна с уменьшением размеров процент нейтронов, вылетающих через ее поверхность, увеличивается, так что при малых размерах установки цепная реакция становится не-
    Рис. 5.8. Рис. 5.9
    возможной. Минимальные размеры реактора, при которых в активной зоне возможно осуществить цепную реакцию деления, называются критическими. Для того, чтобы зaтpуднить вылет нейтронов за пределы реактора, вокруг его aктивнoй зоны (зона, где расположен уран) устраивается отражатель Со (графитовая оболочка. Если скорость нарастания реакции постоянна, то коэффициент размножения равен единице. Для обеспечения этого условия в активную зону погружают стержни из материалов, сильно поглощающих тепловые нейтроны кадмий, бор. Специальное автоматическое устройство, управляющее стержнями, позволяет поддерживать развиваемую мощность на заданном уровне. Управление цепным процессом упрощается тем, что некоторые нейтроны деления являются запаздывающими. Размножение нейтронов не может происходить на одних мгновенных нейтронах (для них k < 1), в нем должны принимать участие и запаздывающие нейтроны (в общем числе нейтронов, испускаемых при делении, составляют около 1%). Подсчет среднего времени жизни одного поколения нейтронов с учетом доли запаздывающих нейтронов дает с 0
    τ

    (вместо с без учета запаздывающих нейтронов. Из расчетов следует, что за с число нейтронов возрастает всего в 1,5 раза. Медленный рост интенсивности цепной реакции упрощает процесс управления. В настоящее время имеются разнообразные конструкции ядерных реакторов, работающих на тепловых и быстрых нейтронах. Ядерные реакторы на быстрых нейтронах не содержат замедлителя. Ядерные реакторы широко используются в атомных электростанциях для получения энергии.
    1   ...   5   6   7   8   9   10   11   12   ...   18


    написать администратору сайта