Главная страница
Навигация по странице:

  • Входы Выходы

  • Последний вариант цифровой электроники. Последний вариант цифровой электроники (1). Тема Математическое введение в цифровую технику. 11


    Скачать 2.28 Mb.
    НазваниеТема Математическое введение в цифровую технику. 11
    АнкорПоследний вариант цифровой электроники
    Дата27.02.2022
    Размер2.28 Mb.
    Формат файлаdoc
    Имя файлаПоследний вариант цифровой электроники (1).doc
    ТипДокументы
    #375440
    страница7 из 16
    1   2   3   4   5   6   7   8   9   10   ...   16


    На основании таблицы истинности можно записать ФАЛ для прямых значений входных и выходных переменных, а также, используя свойство эквивалентности операций И и ИЛИ в прямой и инверсной логике (запись эквивалентна записи ), для инверсных значений входных и выходных переменных:





    .

    Синтезированная на основании приведенных логических уравнений схема шифратора для прямых и инверсных входов и выходов представлена на рис.8.12.



    Рис.8.12. Функциональная схема шифратора «из 8 в 3» с прямыми (а) и инверсными (б) входами и выходами.

    Условные графические обозначения шифратора «из 8 в 3» в электрических функциональных и принципиальных схемах приведены на рис.8.13.



    Рис. 8.13. Условное графическое обозначение шифратора «из 8 в 3» на функциональных (а) и принципиальных (б) схемах.

    Существующие микросхемы шифраторов работают по несколько иному принципу, чем тот, который определен таблицей 8.5. Этой таблицей не определена ситуация, когда на входы шифратора подается сразу несколько единиц. Например, если на изображенной на рис 8.12,а схеме шифратора подать логические единицы на входы X4 и X2 одновременно, логические единицы появятся на выходах Y3 и Y2. Такая кодовая комбинация на выходе является нарушением работы шифратора, поскольку определяет подачу единицы на вход X6, что не соответствует действительности. В реальных микросхемах реализуются так называемые приоритетные шифраторы. В таких шифраторах предусматривается одновременная подача активных уровней сигнала на несколько входов одновременно. Причем на выходах формируется двоичный код входа с максимальным номером, на который подан активный уровень сигнала. Также микросхемы шифраторов имеют дополнительные выводы, позволяющие наращивать разрядность шифруемого унитарного кода путем каскадного соединения нескольких микросхем. В качестве примера приведем микросхему приоритетного шифратора К555ИВ1, условное графическое обозначение которой приводится на рис.8.14, а логика работы определяется таблицей истинности 8.6. Крестиками в таблице обозначаются неопределенные значения, которые могут быть равны как единице, так и нулю.



    Рис.8.14. Условное графическое обозначение шифратора К555ИВ1.

    Таблица 8.6

    Входы

    Выходы





























    1

    х

    х

    х

    х

    х

    х

    х

    х

    1

    1

    1

    1

    1

    0

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    0

    0

    1

    1

    1

    1

    1

    1

    1

    0

    1

    1

    1

    0

    1

    0

    1

    1

    1

    1

    1

    1

    0

    х

    1

    1

    0

    0

    1

    0

    1

    1

    1

    1

    1

    0

    х

    х

    1

    0

    1

    0

    1

    0

    1

    1

    1

    1

    0

    х

    х

    х

    1

    0

    0

    0

    1

    0

    1

    1

    1

    0

    х

    х

    х

    х

    0

    1

    1

    0

    1

    0

    1

    1

    0

    х

    х

    х

    х

    х

    0

    1

    0

    0

    1

    0

    1

    0

    х

    х

    х

    х

    х

    х

    0

    0

    1

    0

    1

    0

    0

    х

    х

    х

    х

    х

    х

    х

    0

    0

    0

    0

    1


    Все выводы микросхемы К555ИВ1 инверсные. Кроме информационных выводов, микросхема также имеет управляющие выводы , и . Вывод выполняет функцию входа разрешения, – выхода переноса и – выхода признака подачи сигнала. При логической единице на входе работа микросхемы запрещена и на всех пяти выходах микросхемы установятся логические единицы. Разрешением работы микросхемы является логический ноль на входе . На выходе формируется логический ноль, если хотя бы на один из информационных входов микросхемы подается активный логический ноль. Если на всех входах присутствуют пассивные логические единицы, на выходе устанавливается логическая единица, свидетельствующая об отсутствии воздействия на входы . На выходе переноса при всех единицах на входах и разрешающем нуле на входе будет установлен логический ноль, свидетельствующий о том, что дешифрация разрешена, но активный сигнал унитарного входного кода поступает на микросхему другой группы разрядов. Пример каскадного включения микросхем К555ИВ1 с целью синтеза шифратора «из 16 в 4» приведен на рис.8.15.



    Рис.8.15. Пример каскадного включения микросхемы К555ИВ1 для синтеза приоритетного шифратора «из 16 в 4»

    Выходы двоичного кода Y1Y4 в такой схеме будут прямыми. Если логический ноль подан на один из входов , на выходах микросхемы DD3 появятся разряды Y1, Y2, Y3 прямого выходного кода, на выходе DD1 – логический ноль, определяющий разряд Y4 прямого выходного кода. Если логический ноль подается на один из входов , логическая единица с выхода запретит работу микросхемы DD1, а на выходах DD3 установятся значения разрядов Y1, Y2, Y3 прямого выходного кода. В разряде Y4 также установится логическая единица. Выход с микросхемы DD1 в такой схеме будет иметь смысл прямого выхода подачи активного входного сигнала хотя бы на один из входов, либо инверсного выхода переноса.

    Шифраторы используются для построения устройств ввода первичной информации – клавиатур. Для этого необходимо активные уровни сигнала унитарного входного кода формировать с помощью ключей-кнопок клавиатуры. Аналогично можно реализовывать устроайства вывода информации с использованием дешифраторов, например индикаторы или исполнительные механизмы. На рис. 8.16 показан пример построения линейной и матричной клавиатур на 8 и 64 клавиш соответственно.



    Рис.8.16. Пример реализации линейной клавиатура на базе шифратора (а) и матричной клавиатуры на базе шифратора и дешифратора (б).

    В схеме рис.8.16,а входной логический ноль формируется путем нажатия соответствующей кнопки и замыкания входной цепи на нулевой потенциал общего провода. При отсутствии воздействия на кнопки входные потенциалы шифратора через резисторы R1R8 подтянуты к напряжению питания, т.е. имеют пассивные уровни логических единиц. Соотвтетствующий двоичный код номера нажатой кнопки с выхода шифратора поступает в цифровую часть схемы измерительного устройства для последующей обработки. Признаком того, что хотя бы одна из кнопок нажата, является активный уровень сигнала «кнопка нажата», сформированный выводом G микросхемы шифратора. Этот сигнал может служить командой цифровому устройству, к которому подключена клавиатура, на то, чтобы оно приступило к считыванию кода нажатой кнопки. Такой сигнал может быть подан, например, на линию прерывания микропроцессорной системы (о прерываниях в микропроцессорных системах будет сказано в главе 12).

    Линейные клавиатуры имеют ограничения по количеству кнопок, определяемые разрядностью шифратора. Поскольку многие современные измерительные устройства имеют широкую функциональность и могут требовать наличия большого количества управляемых органов, линейная организации в таком случае может оказаться недостаточной. Когда требуется формировать клавиатуры с большим количеством кнопок, конструктивно и схемотехнически оптимальной является матричная организация, пример которой показан на рис.8.16,б. В такой схеме кнопки SA1…SA64 устанавливаются в пересечениях строк и столбцов прямоугольной матрицы размерностью 8х8. Опрос кнопок осуществляется путем сканирования их в матрице. Цифровое устройство вырабатывает двоичный код, который преобразуется дешифратором DD2 (дешифратор в схеме изображен в зеркальном отображении, т.е. его входы в УГО показаны справа, а выходы слева) в унитарный инверсный код, в результате чего выбранный столбец матрицы приобретает потенциал уровня логического нуля. Это эквивалентно подключению к земле одного из контактов кнопок SA1…SA8 в схеме рис.8.16,а. Далее, если в выбранном столбце нажата кнопка, то на выходе шифратора DD1 сформируется ее двоичный код, а также станет активным сигнал «кнопка нажата». В противном случае сигнал «кнопка нажата» будет иметь пассивный уровень. С определенной периодичностью цифровое устройство будет менять двоичный код активизируемого столбца матрицы, в результате чего циклически будет производиться опрос всех столбцов. Таким образом, двоичный код активизируемого столбца будет выходным для цифрового устройства, к которому данная клавиатура подключена, а код номера кнопки в столбце – входным. При такой организации от цифрового устройства требуется, чтобы оно постоянно опрашивало клавиатуру, формируя двоичный код столбца на дешифратор столбцов. Часто подобным цифровым устройством является микропроцессорная система. Возложение на нее задачи постоянного формирования и чередования кодов столбцов матрицы приводит ее к загрузке этим процессом, что снижает производительность системы. Поэтому для разгрузки микропроцессорной системы в схеме клавиатуры используют устройство, автономно формирующее и чередующее коды столбцов матрицы. Таким устройством является счетчик DD3, на входы которого подается последовательность импульсов с генератора импульсов GN. В схеме подключение счетчика к входам дешифратора показано пунктирными линиями. Подробно о счетчиках будет сказано в главе 9. В общем случае счетчик формирует на выходе двоичный код количества импульсов, поступающих на его вход. Таким образом, код с выхода счетчика будет постоянно увеличиваться на единицу, что повлечет за собой активизацию соседних столбцов в матрице. Этот же код будет поступать в цифровое устройство уже как входной код для идентификации им номера активного столбца матрицы. Признаком того, что хотя бы одна кнопка нажата, будет наличие на выходе «кнопка нажата» активного уровня сигнала, являющегося для цифрового устройства командой на считывания кодов номеров столбца и нажатой кнопки в столбце.
    1   2   3   4   5   6   7   8   9   10   ...   16


    написать администратору сайта