Логика. Учебник по логике москва 2000 Оглавление Глава I. Предмет и значение логики Мышление как предмет изучения логики
Скачать 2.39 Mb.
|
§ 2. ПРОСТОЕ СУЖДЕНИЕ Суждения бывают простые и сложные: последние состоят из нескольких простых. Суждение «Некоторые вулканы — действующие» — простое, а суждение «Прозрачный лес один чернеет, и ель сквозь иней зеленеет, и речка подо льдом блестит» — сложное. Виды простых суждений 1. Суждения свойства (атрибутивные). В суждениях этого вида утверждается или отрицается принадлежность предмету известных свойств, состояний, видов деятельности. Примеры: «У розы приятный запах», «Певец исполняет арию из оперы «Евгений Онегин», «Всякий терьер — собака», «7 не есть четное число». Схемы этого вида суждения: Sесть Р или Sне есть Р. 2. Суждения с отношениями. В этих суждениях говорится об отношениях между предметами. Например, «Всякий протон тяжелее электрона», «Эльбрус выше Монблана», «Н. В. Гоголь родился позднее А. С. Грибоедова», «В. Г. Белинский — современник Н. В. Гоголя», «Отцы старше своих детей» и т. д. Формула, выражающая суждение с двухместным отношением, записывается как аRbили R (а, b), где а и b— имена предметов, a R— имя отношения. В суждении с отношением может что-либо утверждаться или отрицаться не о двух, а о трех, четырех или большем числе предметов. Например, «Бологое находится между Санкт-Петербургом и Москвой». Такие суждения выражаются формулой R(a1 ,а2 , а3..., аn). 3. Суждения существования (экзистенциальные). В них утверждается или отрицается существование предметов (материальных или идеальных) в действительности. Примеры этих суждений: «Существует атомный реактор в Чернобыле», «Не существует беспричинных явлений». Категорические суждения и их виды (деление do количеству и качеству) В традиционной логике все три указанных вида представляют простые категорические суждения. По качеству связки («есть» или «не есть») категорические суждения делятся на утвердительные и отрицательные. Суждения «Многие промышленные предприятия рентабельны», «Все страусы — птицы» утвердительные. Суждения «Некоторые дома не являются благоустроенными», «Ни один карась не является хищной рыбой» отрицательные. Связка «есть» в утвердительном суждении отражает наличие у предмета (предметов) некоторых свойств. Связка «не есть» отражает то, что предмету (предметам) не присуще некоторое свойство. Некоторые логики считали, что в отрицательных суждениях нет отражения действительности. На самом деле отсутствие определенных признаков также представляет собой действительный признак, имеющий объективную значимость. В отрицательном истинном суждении наша мысль разъединяет (разделяет) то, что находится разделенным в объективном мире. В зависимости от того, обо всем классе предметов, о части этого класса или об одном предмете идет речь в субъекте, суждения делятся на общие, частные и единичные. Например, «Все соболя — ценные пушные звери» и «Все здравомыслящие люди хотят долгой, счастливой и полезной жизни» (Поль С. Брэгг) — общие суждения; «Некоторые цветы — розы» — частное; «Везувий — действующий вулкан» — единичное. Структура общего суждения: «Все Sесть (не есть) Р». Единичные суждения будут трактоваться как общие, так как их субъектом является одноэлементный класс. Среди общих суждений встречаются выделяющие суждения, в состав которых входит кванторное слово «только», — «Только добрый человек может быть врачом» (П. Дюбуа). Примерами выделяющих суждений являются и следующие: «Поль С. Брэгг пил только дистиллированную воду», «Человеческий организм может усваивать только органические вещества», «Смелый человек не боится правды. Ее боится только трус» (А. Конан Дойл). Среди общих суждений имеются исключающие суждения, например: «Все студенты нашей группы, за исключением больных, пришли на семинар». К числу исключающих суждений относятся и те, в которых выражены исключения из правил русского или иных языков, правил логики, математики и других наук. Частные суждения имеют структуру: «Некоторые Sесть (не есть) Р». Они делятся на неопределенные и определенные. Например, «Некоторые грибы — съедобны» — неопределенное частное суждение. Мы не установили, обладают ли признаком съедобности все грибы, но не установили и того, что признаком съедобности не обладают некоторые грибы. Если мы установили, что «Только некоторые Sобладают признаком Р», то это будет определенное частное суждение, структура которого: «Только некоторые Sесть (не есть) Р». Примеры: «Только некоторые грибы съедобны»; «Только некоторые остроугольные треугольники являются равносторонними»; «Только некоторые тела легче воды». В определенных частных суждениях часто применяются кванторные слова: большинство, меньшинство, немало, не все, многие, почти все, несколько и др. Единичные суждения имеют структуру: «Это Sесть (не есть) Р». Примеры единичных суждений: «Эверест — высочайшая вершина мира», «Третьяковская галерея в Москве — крупнейший в России музей, где собраны лучшие произведения отечественного искусства». Объединенная классификация простых категорических суждений по количеству и качеству В каждом суждении имеется количественная и качественная характеристика. Поэтому в логике применяется объединенная классификация суждений по количеству и качеству, на основе которой выделяются следующие 4 типа суждений. А — общеутвердительное суждение. Структура его: «Все Sесть Р». Например, «Все люди — позвоночные». I — частноутвердительное суждение. Структура его: «Некоторые Sесть Р». Например, «Некоторые элементарные частицы имеют положительный заряд». Условные обозначения для утвер-дительных суждений взяты от слова affirmo — утверждаю (при этом берутся две первые гласные буквы: А — для обозначения общеутвердительного и I — для обозначения частноутвердитель-ного суждения). Е — общеотрицательное суждение. Его структура: «Ни одно Sне есть Р». Пример: «Ни один дельфин не является рыбой». О — частноотрицательное суждение. Структура его: «Некоторые Sне есть Р». Например, «Некоторые люди не являются долгожителями». Условные обозначения для отрицательных суждений взяты от слова nego — отрицаю. Распределенность терминов в категорических суждениях В суждениях термины Sи Р могут быть либо распределены, либо не распределены. Термин считается распределенным, если его объем полностью включается в объем другого термина или полностью исключается из него. Термин будет нераспределенным, если его объем частично включается в объем другого термина или частично исключается из него. Проанализируем четыре вида суждений: А, I, Е, О (мы рассматриваем типичные случаи). Суждение А общеутвердительное. Его структура: «Все Sесть Р». Рассмотрим два случая. 1-й случай. В суждении «Все караси — рыбы» субъектом является понятие «карась», а предикатом — понятие «рыба». Квантор общности — «все». Субъект распределен, так как речь идет о всех карасях, т. е. его объем полностью включен в объем предиката. Предикат не распределен, так как в суждении речь идет лишь о той части объема предиката, которая совпадает с объемом субъекта. Распределенность терминов в суждениях можно иллюстрировать с помощью круговых схем Эйлера. На рис. 34 изображено соотношение Sи Р в суждении А. Заштрихованная часть круга на рис. 34—39 характеризует распределенность (или нераспределенность) терминов. Если объем Р больше (шире) объема S, то Р не распределен. 2-й случай. В суждении «Все квадраты — равносторонние прямоугольники» термины такие: S— «квадрат», Р — «равносторонний прямоугольник», квантор общности — «все». В этом суждении Sраспределен и Р распределен, так как их объемы полностью совпадают (рис. 35). Если Sравен по объему Р, то Р распределен. Это бывает в определениях и в выделяющих общих суждениях5. Суждение I частноутвердительное. Его структура: «Некоторые Sесть Р». Рассмотрим два случая. 1-й случай. В суждении «Некоторые инженеры — филателисты» термины такие: S— «инженер», Р — «филателист», квантор существования — «некоторые». Соотношение Sи Р изображено на рис. 36. Субъект не распределен, так как в нем мыслится только часть инженеров, т. е. объем субъекта лишь частично включается в объем предиката. Предикат тоже не распределен, так как он также лишь частично включен в объем субъекта (только некоторые филателисты являются инженерами). Если понятия S и Р перекрещиваются, то Р не распределен. 2-й случай. В суждении «Некоторые писатели — драматурги» термины такие: S— «писатель», Р — «драматург», квантор существования — «некоторые». Субъект не распределен, так как в нем мыслится только часть писателей, т. е. объем субъекта лишь частично включается в объем предиката. Предикат распределен, так как объем предиката полностью входит в объем субъекта (рис. 37). Таким образом, Р распределен, если объем Р меньше объема S, что бывает в частных выделяющих суждениях. Суждение Е общеотрицательное. Его структура: «Ни одно Sне есть Р ». Например, «Ни один лев не есть травоядное животное». В нем термины такие: S— «лев», Р — «травоядное животное», квантор общности — «ни один». Здесь объем субъекта полностью исключается из объема предиката, и наоборот. Позтому и S, и Р распределены (рис. 38). Суждение О частноотрицательное. Его структура: «Некоторые Sне есть Р». Например, «Некоторые учащиеся не являются спортсменами». В нем такие термины: S— «учащийся», Р — «спортсмен», квантор существования — «некоторые». Субъект не распределен, так как мыслится лишь часть учащихся, а предикат распределен, ибо в нем мыслятся все спортсмены, ни один из которых не включен в ту часть учащихся, которая мыслится в субъекте (рис. 39). Итак, 5 распределен в общих суждениях и не распределен в частных; Р всегда распределен в отрицательных суждениях, вутвердительных же он распределен тогда, когда по объему Распределенность терминов в категорических суждениях можно выразить в виде следующей схемы (табл. 1), где знаком (+) выражена распределенность термина, а знаком (-) его нераспределенность. В ней же дана объединенная информация о простых суждениях. § 3. СЛОЖНОЕ СУЖДЕНИЕ И ЕГО ВИДЫ Сложные суждения образуются из простых суждений с помощью логических связок: конъюнкции, дизъюнкции, импликации, эквиваленции и отрицания. Таблицы истинности этих логических связок следующие (табл. 2, 3). Буквы а, b, с — переменные, обозначающие суждения; буква «И» обозначает истину, а «Л» — ложь. Таблицу истинности для конъюнкции (а ^ b)можно разъяснить на следующем примере. Учителю дали короткую характеристику, состоящую из двух простых суждений: «Он является хорошим педагогом (а) и учится заочно (b)». Она будет истинна в том и только в том случае, если суждения а и bоба истинны. Это и отражено в первой строке. Если же а ложно или bложно, либо и а, и bложны, то вся конъюнкция обращается в ложь, т. е. учителю была дана ложная характеристика. Суждение: «Увеличение рентабельности достигается путем повышения производительности труда (а) или путем снижения себестоимости продукции (b)» — пример нестрогой дизъюнкции. Дизъюнкция называется нестрогой, если ее члены не исключают друг друга. Такое высказывание истинно в том случае, когда истинно хотя бы одно из двух суждений (первые три строки табл. 2), и ложно, когда оба суждения ложны. Члены строгой дизъюнкцииисключают друг друга. Это можно разъяснить на примере: «Я поеду на юг на поезде (а) или полечу на самолете (b) ». Я не могу одновременно ехать на поезде и лететь на самолете. Строгая дизъюнкция истинна тогда, когда истинно лишь одно из двух простых суждений. Таблицу для импликацииможно разъяснить на таком примере: «Если через проводник пропустить электрический ток (а), то проводник нагреется (b) »6. Импликация истинна всегда, кроме одного случая, когда первое суждение истинно, а второе ложно. Действительно, не может быть, чтобы по проводнику пропустили электрический ток, т. е. чтобы суждение (а) было истинным, а проводник не нагрелся, т. е. суждение (b)было ложным. Эквиваленция в таблицехарактеризуется так:истинно в тех и только в тех случаях, когда и а, и bлибо оба истинны, либо оба ложны. Отрицание сужденияхарактеризуется так: если а истинно, то его отрицание ложно, и если а ложно, то а истинно. Если в формулу входят три переменные, то таблица истинности для этой формулы, включающая все возможные комбинации истинности или ложности ее переменных в таблице, будет состоять из 23 = 8 строк; при четырех переменных в таблице будет 2* = 16 строк; при пяти переменных в таблице имеем 25 = 32 строки; при переменных — 2n строк (табл. 4, 5). Алгоритм распределения значений И и Л для переменных (например, для четырех переменных а, b, с, d) таков (табл. 4). Имеем 24= 16 строк. В столбце для а сначала пишем 8 раз «И» и 8 раз «Л». В столбце для bсначала пишем 4 раза «И» и 4 раза «Л», затем повторяем и т. д. Выполнимая формула та, которая может принимать по крайней мере одно значение «истина». Тождественно-истинной формулой называется формула, которая при любых комбинациях значений для входящих в нее переменных принимает значение «истина» (иначе она называется законом логики, или тавтологией). Тождественно-ложная формула та, которая соответственно принимает только значение «ложь» (она иначе называется противоречием). Приведем доказательство тождественной истинности формулы: Так как в последней колонке мы имеем только значение «истина», формула является тождественно-истинной, или законом логики (такие выражения называют тавтологиями). Итак, конъюнкцияистинна тогда, когда оба простых суждения истинны. Строгая дизъюнкцияистинна тогда, когда только одно простое суждение истинно. Нестрогая дизъюнкцияистинна тогда, когда хотя бы одно простое суждение истинно. Импликацияистинна во всех случаях, кроме одного: когда а истинно, a bложно. Эквиваленцияистинна тогда, когда оба суждения истинны или оба ложны. Отрицание (а) истины дает ложь, и наоборот. Способы отрицания суждений Два суждения называются отрицающими или противоречащими друг другу, если одно из них истинно, а другое ложно (т. е. они не могут быть одновременно истинными или одновременно ложными) (табл. 6). Отрицающими являются следующие пары суждений: 1. А— О. «Все Sесть Р» и «Некоторые Sне есть Р». 2. Е—I. «Ни одно Sне есть Р» и «Некоторые Sесть Р». 3. «Это S есть Р» и «Это Sне есть Р». Операцию отрицания в виде образования нового суждения из данного следует отличать от отрицания, входящего в состав отрицательных суждений. Существует два вида отрицания: внутреннее и внешнее. Внутреннее указывает на несоответствие предиката субъекту (связка выражена словами: «не есть», «не суть», «не является»). Например, «Некоторые люди не имеют высшего образования». Внешнее отрицание означает отрицание всего суждения. Например, «Не верно, что в Москве протекает река Нева». Отрицание сложных суждений Чтобы получить отрицание сложных суждений, имеющих в своем составе лишь операции конъюнкции и дизъюнкции, необходимо поменять знаки операций на противоположные (т. е. конъюнкцию на дизъюнкцию, и наоборот) и над буквами, выражающими элементарные суждения, поставить знак отрицания, а если он уже есть, то отбросить его. Имеем: 1) 2).4) Эти формулы называются законами ле Моргана. Применив их, получим: Если в сложном суждении имеется импликация, то ее необходимо заменить на тождественную формулу без импликации (с дизъюнкцией), а именно:; затем по общему методу найти противоречащее суждение. Например, «Если у меня будет свободное время (а), то я почитаю книгу (b) или посмотрю телевизор (с)». Формула этого сложного суждения: Противоречащее суждение будет: Оно читается так: «У меня будет свободное время, но я не буду читать книгу и не буду смотреть телевизор». |