Главная страница
Навигация по странице:

  • Восстановление карбоксильной группы.

  • 1.1.4.2. Реакции с участием аминогруппы Образование солей.

  • Конденсация с карбонильными соединениями.

  • Окислительное дезаминирование и окисление

  • 1.1.4.3. Реакции с одновременным участием карбоксильной и аминогрупп

  • Учебное пособие Часть I самара Самарский государственный технический университет 2007


    Скачать 1.81 Mb.
    НазваниеУчебное пособие Часть I самара Самарский государственный технический университет 2007
    Дата09.04.2018
    Размер1.81 Mb.
    Формат файлаdoc
    Имя файлаaminoacids.doc
    ТипУчебное пособие
    #40742
    страница3 из 10
    1   2   3   4   5   6   7   8   9   10

    Образование солей. При рН, большем, чем pI, аминокислоты образуют с основаниями соли, легко растворимые в воде:



    Поскольку кислые свойства аминокислот, за исключением аспарагиновой и глутаминовой кислот, выражены слабо, их нельзя титровать щелочами в водной среде. Аспарагиновую и глутаминовую кислоты можно титровать в водной среде щелочами по одной карбоксильной группе с индикатором фенолфталеин. Все аминокислоты, а также полипептиды можно титровать в среде 95%-ного спирта водным или лучше спиртовым раствором КОН с индикатором тимолфталеин.

    Смеси аминокислот с их натриевыми или калиевыми солями широко применяются в биохимии для приготовления буферных растворов.

    Образование эфиров. Метиловые и этиловые эфиры аминокислот получают обработкой суспензии аминокислоты в абсолютном метиловом или этиловом спирте током сухого хлористого водорода:



    Эфиры аминокислот более реакционноспособны, чем свободные аминокислоты, поэтому они служат промежуточными веществами при получении амидов, гидроксамовых кислот, гидразидов, ацилазидов и других производных аминокислот, применяющихся в пептидном синтезе и использующихся для идентификации. В пептидном синтезе и для идентификации широко применяются бензиловые, п-нитробензиловые, трет-бутиловые, п-нитрофениловые, N-оксисукцинимидные и другие эфиры.

    Эфиры аминокислот легко омыляются щелочами, а при обработке аммиаком образуют амиды:



    Восстановление карбоксильной группы. Свободная карбоксильная группа восстанавливается до спиртовой группы под действием лития алюмогидрида (LiAlH4). Но поскольку LiAlH4 мгновенно реагирует с водой, спиртами и другими соединениями, содержащими активный водород с выделением 4 молей водорода, восстановление аминокислот проводят в апротонных растворителях, не взаимодействующих с ним, например в тетрагидрофуране (ТГФ). При этом 0,25 моля LiAlH4 расходуется на образование солей аминокислоты и еще 0,5 моля собственно на восстановление. Общее уравнение реакции приведено ниже. После обработки реакционной смеси водой или кислотой выделяют α-аминоспирт:


    α-Аминоспирты легко окисляются йодной кислотой до альдегидов:



    Эти две последние реакции используются для установления строения новых аминокислот, а также для идентификации и количественного анализа уже известных.

    Декарбоксилирование. При нагревании аминокислот в твердом состоянии в высококипящих растворителях или с раствором гидроксида бария образуются соответствующие амины:


    В живых организмах из аминокислот под действием ферментов декарбоксилаз образуются биогенные амины. Например, в клетках мозга из глутаминовой кислоты образуется важный нейромедиатор ГАМК. Кроме того, декарбоксилирование имеет место при гнилостном расщеплении белков под действием ферментов, выделяемых микроорганизмами.

    Другие реакции, характерные для карбоновых кислот, а именно образование ангидридов и галогенангидридов, в ряду аминокислот не характерны из-за мешающего влияния аминогруппы. Однако ациламинокислоты легко можно превратить как в симметричные, так и в смешанные ангидриды. Например:



    1.1.4.2. Реакции с участием аминогруппы

    Образование солей. Соли аминокислот с минеральными кислотами (хлористоводородной, серной и азотной), как правило, лучше растворимы в воде, чем свободные аминокислоты. Напротив, соли с такими кислотами, как пикриновая и пикролоновая, труднорастворимы, в связи с чем эти соли используются для идентификации и разделения аминокислот:



    Пикриновая кислота Пикролоновая кислота
    Причем, желтые или красные соли аминокислот с пикролоновой кислотой обычно менее растворимы, чем пикраты, и хорошо кристаллизуются из водных растворов.

    Поскольку основные свойства аминокислот выражены слабо, их нельзя титровать кислотами в водной среде, за исключением лизина и аргинина, однако другие аминокислоты можно титровать по аминогруппе хлорной кислотой в среде ледяной уксусной кислоты:



    Поскольку вода мешает этому определению, этот метод применим лишь для количественного анализа твердых сухих образцов.

    N-Ацилирование. Аминокислоты легко реагируют с ангидридами и хлорангидридами кислот в щелочной среде (метод Шоттена – Баумана) с образованием ациламинокислот:



    При простом нагревании аминокислот с ангидридами или хлорангидридами кислот образуются азлактоны:



    Ацильные производные аминокислот (карбобензоксильные, пара-нитрофенилсульфенильные, трет-бутилоксикарбонильные, формильные, 5-диметиламинонафтилсульфонильные (дансильные), трифторацетильные и др.) широко используются в синтезе пептидов и при изучении последовательностей аминокислот в белках.

    N-Алкилирование. При действии галоидных алкилов на аминокислоты в щелочной среде могут быть получены моно-, ди– и триалкилпроизводные:



    Триалкилпроизводные аминокислот представляют собой четвертичные аммониевые основания, внутренние соли которых называются бетаинами (термин происходит от названия «бетаин» – природное соединение, содержащиеся в клетках животных организмов).

    N-2,4-Динитрофениламинокислоты (ДНФ-аминокислоты), а также упомянутые выше фенилизотиоцианатные производные аминокислот (ФТЦ-аминокислоты) нашли широкое применение при изучении первичной структуры белков и в синтезе пептидов. Они получаются при взаимодействии 2,4-динитрофторбензола и фенилизотиоцианата соответственно с аминокислотами в присутствии оснований:



    ДНФ-аминокислоты


    ФТЦ-аминокислоты


    3-Фенил-5-R-тиогидантоины
    Следует иметь в виду, что при нагревании ФТЦ-аминокислот, особенно в присутствии кислот, они легко циклизуются с отщеплением воды и образованием 3-фенил-5-R-тиогидантоинов.

    Конденсация с карбонильными соединениями. Аминокислоты, подобно первичным аминам, взаимодействуют с альдегидами и кетонами с образованием азометинов – альдиминов и кетиминов соответственно (эта реакция обратима):



    Азометины, или основания Шиффа, обладают гораздо меньшими основными свойствами, чем соответствующие амины (они не образуют солей даже с сильными кислотами в водной среде). В том случае, если азометиновая группа (>C=N-) сопряжена с ароматическим кольцом со стороны атома углерода или азота, то такие основания Шиффа, как правило, окрашены. Основания Шиффа на основе α-аминокислот, в отличие от обычных азометинов, способны к изомеризации:



    Эти свойства оснований Шиффа широко используется в синтезе, качественном и количественном анализе аминокислот. На основе реакции конденсации аминокислот с карбонильными соединениями разработаны следующие методы анализа аминокислот.

    1. Титрование аминокислот водным раствором щелочи в избытке формалина (формольное титрование аминокислот, метод Сёренсена) основано на следующих реакциях:





    Метод Сёренсена позволяет определять аминокислоты с первичными аминогруппами и неприемлем для определения пролина и оксипролина, содержащих вторичную аминогруппу. Тример формальдегида (1,3,5-триоксан) реагирует специфично с оксипролином, давая окрашенное соединение с максимумом поглощения при 492-494 нм, что является специфической реакцией на оксипролин.

    2. При взаимодействии аминокислот с фурфуролом в ледяной уксусной кислоте образуются окрашенные соединения с максимумом поглощения при 360-380 нм. Диаминокислоты лизин и орнитин дают при этом второй максимум поглощения при 515-530 нм, что позволяет идентифицировать их в присутствии других аминокислот:



    Фурфурол

    n = 3 – орнитин;

    n = 4 – лизин
    Таким образом, реакции с фурфуролом и тримером формальдегида позволяют качественно определять лизин, орнитин и оксипролин, как в виде индивидуальных соединений, так и в смеси с любыми другими аминокислотами.

    3. В настоящее время интенсивно развивается наиболее чувствительный и высокоспецифический метод флюоресцентного количественного анализа аминокислот, позволяющий определять их не только в гидролизатах белков, но и непосредственно в различных жидкостях организма (кровь, моча и др.). Метод основан на реакции α-аминокислот с о-фталевым диальдегидом в присутствии меркаптоэтанола с образованием флюоресцирующих продуктов (реакция Циммермана):



    4. Реакция α-аминокислот с нингидрином – основная групповая реакция на аминокислоты.

    При нагревании α-аминокислот с нингидрином в водном растворе во всех случаях образуется один и тот же краситель фиолетового цвета. Без нагревания окраска тоже развивается, но гораздо медленнее.



    С точки зрения авторов образование красителя становится возможным в результате изомеризации получающегося на первой стадии реакции основания Шиффа гидролиза продукта изомеризации с образованием кетокислоты и 2-аминоиндандиона-1,3, который конденсируется с нингидрином с образованием красителя – фиолетового Руэмана.

    Поскольку реакция обычно осуществляется при нагревании раствора, образующиеся α-кетокислоты легко отщепляют углекислый газ и дают соответствующие альдегиды.

    Реакцию с нингидрином обычно проводят в нейтральной среде. В присутствии ионов металлов, способных к комплексообразованию с α-аминокислотами, чувствительность реакции сильно уменьшается.

    Для проведения реакции с окрашенными жидкостями , например коричневыми гидролизатами, в качестве экстрагента используют амиловый спирт.

    Реакция с нингидрином имеет большое значение для обнаружения аминокислот на хроматограммах, электрофореграммах, а также при количественном аминокислотном анализе белковых гидролизатов. Фиолетовый Руэмана имеет максимум поглощения при 570 нм. При этом, как установили Мур и Стайн, оптическая плотность раствора пропорциональна молярной концентрации α-аминокислотных групп, что позволяет осуществлять количественное фотометрическое определение различных α-аминокислот.

    β– и γ-Аминокислоты, например β-аланин, ГАМК с нингидрином, дают растворы желто-оранжевого цвета. При этом образуются лишь соответствующие основания Шиффа:



    При взаимодействии пролина и оксипролина с нингидрином возникает ярко-желтая окраска с максимумом поглощения при 440 нм.

    С нингидрином реагируют не только аминокислоты, но и многие аминосоединения: аминосахара, пептиды, белки, мочевина, креатин, аммиак и др. В связи с этим в помещении, где проводится анализ, не должно быть следов аммиака.

    Из синтетических методов, в основе которых лежит конденсация α-аминокислот с карбонильными соединениями, следует отметить реакции трансаминирования (переаминирования). При кипячении водных растворов α-аминокислот с α-кетокислотами происходит переход α-аминогруппы от аминокислоты к α-кетокислоте:



    Трансаминирование, так же, как и реакция с нингидрином, включает в себя стадию конденсации с образованием основания Шиффа, изомеризацию последнего, его гидролиз и обычно сопровождается декарбоксилированием. Эта реакция используется для препаративного получения альдегидов или α-аминокислот. Например, при взаимодействии фенилаланина с пировиноградной кислотой с хорошими выходами образуются фенилуксусный альдегид и аланин:



    Реакции трансаминирования являются важнейшими в метаболизме аминокислот. Реакции трансаминирования осуществляются как в катаболических, так и в анаболических процессах с участием α-аминокислот. Они осуществляются под действием ферментов трансаминаз, коферментом которых является пиридоксальфосфат (PLP).

    Представленная здесь альдегидная форма кофермента в свободном виде в организмах не встречается. В отсутствие субстратов альдегидная группа пиридоксальфосфата ковалентно связана с аминогруппой остатка лизина трансаминазы.

    Механизм реакций трансаминирования заключается в следующем (рис.1.5). Во время реакции аминокислота вытесняет остаток лизина, при этом образуется альдимин. Затем альдимин изомеризуется в кетимин. Полученный кетимин гидролизуется до 2-кетокарбоновой кислоты и пиридоксаминфосфата.



    Р и с.1.5. Механизм ферментативной реакции трансаминирования
    Вторая часть реакции включает те же три стадии процесса, проте-

    кающие в противоположном направлении. Пиридоксаминфосфат и вторая 2-кетокислота образуют кетимин, который изомеризуется в альдимин. Наконец, отщепляется вторая аминокислота и регенерируется кофермент.

    В результате трансаминирования в организме человека из
    2-кетокислот образуются следующие аминокислоты: аланин, аспарагиновая и глутаминовая кислоты и их амиды – аспарагин и глутамин.

    Окислительное дезаминирование и окисление. Окислительным дезаминированием называют реакции α-аминокислот, приводящие к образованию аммиака (т.е. степень окисления азота в ходе реакции не меняется). Эти реакции занимают важное место в метаболизме аминокислот. В этих реакциях аминогруппа вначале окисляется до иминогруппы. При этом восстановительные эквиваленты переносятся либо на НАД+, либо на НАДФ+, а образовавшаяся иминокислота неферментативно гидролизуется до аммиака и 2-кетокислоты:



    Окислительное дезаминирование можно осуществить и препаративным путем. Например, при обработке водных растворов α-аминокислот N-бромсукцинимидом (NBS) происходит количественное декарбоксилирование аминокислот и образование соответствующего альдегида:



    N-Бромсукцинимид
    Интересно отметить, что при избытке NBS наблюдается образование нитрила (степень окисления азота не меняется), содержащего на один атом углерода меньше, чем исходные аминокислоты:



    Собственно окисление аминогруппы аминокислот приводит к образованию соединений азота с более высокой степенью окисления чем в исходной аминокислоте. Важнейшей реакцией такого типа является взаимодействие аминокислот с азотистой кислотой, приводящее к образованию азота и оксикислот:



    Азотистой кислотой окисляются первичные алифатические аминогруппы, находящиеся не только в α-положении, но и в любом другом. Например, при окислении моля лизина выделяется два моля азота.

    Эта реакция лежит в основе количественного газометрического метода анализа аминокислот (метод ван-Слайка), а также используется как общая групповая качественная реакция. Пролин этой реакции не дает, потому что не содержит в своей молекуле первичной аминогруппы.

    1.1.4.3. Реакции с одновременным участием карбоксильной и аминогрупп

    Образование комплексов с ионами металлов. Все α-амино-кислоты образуют прочные хелатные комплексы с ионами двухвалентных металлов. Их водные растворы в отличие от растворов соответствующих солей щелочных металлов обладают очень низкой электропроводностью. Это обусловлено тем, что хелатные комплексы с ионами двухвалентных металлов электронейтральны.

    Этим же обусловлена их хорошая растворимость в полярных растворителях, несмешивающихся с водой, например в амиловом и бутиловом спиртах.

    Устойчивость комплексов изменяется в следующей последовательности:

    Cu2+ > Ni2+ > Zn2+ > Co2+ > Fe2+ > Mn2+ > Mg2+

    Способность к комплексообразованию обеспечивает всасывание микроэлементов, таких, как Cu2+, Zn2+, Fe2+ и др., из кишечника в кровь.

    Комплексные соединения с α-аминокислотами образуют и соли железа (III). При прибавлении к водному раствору α-аминокислоты водного раствора FeCl3 появляется красная окраска, исчезающая при прибавлении минеральной кислоты.

    Медные комплексы α-аминокислот, окрашенные в синий цвет, используют для качественного и количественного анализа, а также для очистки α-аминокислот. Количественный анализ α-аминокислот можно осуществлять фотоэлектроколориметрическим и йодометрическим методами, основанными на реакции α-аминокислот с солями меди. Быстро развивается лигандообменный хроматографический анализ аминокислот и пептидов на колонках с силикагелем в присутствии ионов меди.
    1   2   3   4   5   6   7   8   9   10


    написать администратору сайта