Учебное пособие Тошкент 2013 2 Данное учебное пособие предназначено для студентовбакалавров
Скачать 7.01 Mb.
|
Пероксисомы Пероксисомы- микротельца цитоплазмы (0,1-1,5 мкм), сходные по строению с лизосомами, однако отличаются от них тем, что в их матриксе содержатся кристаллоподобные структуры, а среди белков-ферментов содержится каталаза, разрушающая перекись водорода, образующуюся при окислении аминокислот. 2.5. Строение и функции немембранных органелл Рибосомы - аппарат синтеза белка и полипептидных молекул.По локализации подразделяются на: -свободные (находятся в гиалоплазме); -несвободные или прикрепленные (связаны с мембранами эндоплазматической сети). Каждая рибосома состоит из малой и большой субъединиц. Каждая субъединица рибосомы состоит из рибосомальной РНК и белка рибонуклеопротеида, которые образуются в ядрышке. Сборка субъединиц в единую рибосому осуществляется в цитоплазме. Для синтеза белка отдельные рибосомы с помощью матричной или информационной РНК объединяются в цепочки рибосом - полисомы. Свободные и прикрепленные рибосомы, помимо отличия в их локализации, отличаются определенной функциональной специфичностью: свободные рибосомы синтезируют белки для внутренних нужд клетки (белки-ферменты, 26 структурные белки), прикрепленные синтезируют белки "на экспорт". Клеточный центр - цитоцентр, центросома, центриоли. В неделящейся клетке клеточный центр состоит из двух основных структурных компонентов: диплосомы, центросферы. Диплосома состоит из двух центриолей - материнской и дочерней, расположенных под прямым углов друг к другу. Каждая центриоль состоит из микротрубочек, образующих структуру в виде полого цилиндра (диаметром 0,2 мкм, длиной 0,3- 0,5 мкм). Микротрубочки с помощью "ручек" объединяются в триплеты Рис-11. Клеточный центр (по три трубочки), образуя 9 триплетов. Центросфера - бесструктурный участок гиалоплазмы вокруг диплосомы, от которого радиально отходят микротрубочки (лучистая сфера) (Рис-11) Функции цитоцентра: -образование веретена деления в профазе митоза; -положение центриолей в некоторых эпителиальных клетках предопределяется их полярную дифференцированность; -участие в формировании микротрубочек клеточного каркаса; -в реснитчатых эпителиальных клетках центриоли являются базальными тельцами ресничек. Микротрубочки - полые цилиндры (внешний диаметр - 24 нм, внутренний - 15 нм), являются самостоятельными органеллами, образуя цитоскелет, или же входят в состав других органелл (центриолей, ресничек, жгутиков). Стенка микротрубочки состоит из глобулярного белка тубулина, который состоит из отдельных округлых образований - глобул, диаметром 5 нм. Такие глобулы могут находиться в гиалоплазме в свободном состоянии или же, под влиянием определенных факторов, соединяться между собой и 27 формировать микротрубочки, а затем снова распадаться. Так формируются, а затем распадаются микротрубочки веретена деления в разные фазы митоза. Однако, в составе центриолей, ресничек и жгутиков микротрубочки являются устойчивыми образованиями. Большая часть микротрубочек участвует в формировании внутриклеточного каркаса, который поддерживает форму клетки, обуславливает определенное положение органелл в цитоплазме, а также предопределяет направление внутриклеточных перемещений. Белки тубулины не обладают способностью к сокращению, а следовательно и микротрубочки не сокращаются. Однако в составе ресничек и жгутиков происходит взаимодействие между микротрубочками и их скольжением относительно друг друга, что и обеспечивает движение ресничек и жгутиков. Микрофибриллы или промежуточные филаменты, представляют собой тонкие (10 нм) неветвящиеся нити, локализующиеся преимущественно в кортикальном (подмембранном) слое цитоплазмы. Они состоят из белка, но разного в разных клетках (в эпителиальных клетках кератина, в фибробластах виментина, в мышечных клетках десмина и другие). Функциональная роль микрофибрилл состоит в участии, наряду с микротрубочками, в формировании клеточного каркаса, выполняя опорную функцию. В некоторых клетках (эпидермоциты кожи) микрофибриллы объединяются в пучки и образуют тонофибриллы, которые рассматриваются как специальные органеллы, выполняющие опорную роль. Микрофиламенты еще более тонкие нитчатые структуры (5-7 нм), состоящие из сократительных белков (актина, миозина, тропомиозина), неодинаковых в разных клетках. Локализуются преимущественно в кортикальном слое цитоплазмы. В совокупности микрофиламенты составляют сократительный аппарат клетки, обеспечивающий различные виды движений: перемещение органелл; ток гиалоплазмы; изменение клеточной поверхности; образование псевдоподий и перемещение клетки. Скопление микрофиламентов в мышечных волокнах образует специальные органеллы - миофибриллы. 2.6. Включения. 28 Вкючения - непостоянные структурные компоненты цитоплазмы. Классификация включений: -трофические: лецитин в яйцеклетках, гликоген, липиды, (Рис-12)имеются почти во всех клетках, -секреторные: (секреторные гранулы в секретирующих клетках-зимогенные гранулы в ацинозных клетках поджелудочной железы,секреторные гранулы в эндокринных клетках и другие; -экскреторные: вещества, подлежащие удалению из Рис 12- жировые включения организма (например, гранулы мочевой кислоты в эпителии почечных канальцев); -пигментные: меланин, гемоглобин; липофусцин; билирубин и другие. В процессе жизнедеятельности в некоторых клетках накапливаются случайные включения: -медикаментозные, частички угля, кремния и так далее. Эти включения имеют определенный цвет и придают окраску всей клетке (меланин - черный или коричневый, гемоглобин - желто- красный и так далее). Необходимо отметить, что пигментные включения характерны только для определенных типов клеток (меланин содержится в меланоцитах, гемоглобин - в эритроцитах). Однако, липофусцин может накапливаться во многих типах клеток обычно при их старении. Его наличие в клетках свидетельствует о их старении и функциональной неполноценности. 2.7. Ядро. Репродукция клеток В организме человека содержатся только эукариотические (ядерные) типы клеток. Безъядерные структуры (эритроциты, тромбоциты, роговые чешуйки) являются вторичными (постклеточными) образованиями, так как они образуются из 29 ядерных клеток в результате их специфической дифференцировки. В подавляющем большинстве клеток содержится одно ядро, но встречаются двуядерные и даже многоядерные клетки. Форма ядра в большинстве клеток круглая (сферическая) или овальная. В некоторых клетках ядра имеют вытянутую или палочковидную форму. В зернистых лейкоцитах ядро подразделяется на сегменты (сегментоядерные лейкоциты). Локализуется ядро обычно в центре клетки, но в клетках эпителиальных тканей ядра нередко сдвинуты к базальному полюсу. Функция ядра это регуляция синтезе белка и передача наследственных признаков Структурные элементы интерфазного ядра Структурные элементы ядра бывают четко выражены только в определенный период клеточного цикла в интерфазе. В период деления клетки (в период митоза или мейоза) одни структурные элементы исчезают, другие существенно преобразуются. Классификация структурных элементов интерфазного ядра: -хроматин, ядрышко, кариоплазма, кариолемма. Кариолемма (нуклеолемма) - ядерная оболочка отделяет содержимое ядра от цитоплазмы (барьерная функция), в то же время обеспечивает регулируемый обмен веществ между ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина. Кариолемма состоит из двух билипидных мембран - внешней и внутренней ядерной мембраны, разделенных перинуклеарным пространством, шириной от 25 до 100 нм. В кариолемме имеются поры, диаметром 80-90 нм. В области пор внешняя и внутренняя ядерные мембраны переходят друг в друга, а перинуклеарное пространство оказывается замкнутым. Просвет поры закрыт особым структурным образованием - комплексом поры, который состоит из фибриллярного и гранулярного компонента. Гранулярный компонент представлен белковыми гранулами диаметром 25 нм, располагающимися по краю поры в три ряда. От каждой гранулы отходят фибриллы и соединяются в центральной грануле, располагающейся в центре поры. Комплекс поры играет роль диафрагмы, регулирующей ее проницаемость. Размеры пор стабильны для данного типа клеток, но число пор может изменяться в процессе дифференцировки клетки. В ядрах 30 сперматозоидов ядерные поры отсутствуют. На наружной ядерной мембране могут локализоваться прикрепленные рибосомы. Кроме того, наружная ядерная мембрана может продолжаться в канальцы эндоплазматической сети. Хроматин представляет собой вещество, хорошо воспринимающее краситель (хромос), откуда и произошло его название. Хроматин состоит из хроматиновых фибрилл, толщиной 20-25 нм, которые могут располагаться в ядре рыхло или компактно. На этом основании различают два вида хроматина: -эухроматин - рыхлый или деконденсированный хроматин, слабо окрашивается основными красителями; -гетерохроматин - компактный или конденсированный хроматин, хорошо окрашивается этими же красителями. При подготовке клетки к делению в ядре происходит спирализация хроматиновых фибрилл и превращение хроматина в хромосомы. После деления в ядрах дочерних клеток происходит деспирализация хроматиновых фибрилл и хромосомы снова преобразуются в хроматин. Следовательно, хроматин и хромосомы представляют собой различные фазы одного и того же вещества. По химическому строению хроматин состоит из: -дезоксирибонуклеиновой кислоты (ДНК) 40 %; -белков около 60 %; -рибонуклеиновой кислоты (РНК) 1 %. Ядерные белки представлены формами: -щелочными или гистоновыми белками 80-85 %; -кислыми белками 15-20 %. Гистоновые белки связаны с ДНК и образуют полимерные цепи (ДНП), которые и представляют собой хроматиновые фибриллы, отчетливо видимые при электронной микроскопии. На определенных участках хроматиновых фибрилл осуществляется транскрипция с ДНК различных РНК, с помощью которых осуществляется затем синтез белковых молекул(13-рис) Процессы транскрипции в ядре осуществляются только на свободных хромосомных фибриллах, то есть в эухроматине. В конденсированном хроматине эти процессы не осуществляются и потому гетерохроматин является неактивным хроматином. Соотношение эухроматина и гетерохроматина в ядре является 31 показателем активности синтетических процессов в данной клетке. На хроматиновых фибриллах в S-периоде интерфазы осуществляется также процессы редупликации ДНК. Эти процессы происходят как в эухроматине, так и в гетерохроматине, но в гетерохроматине они протекают значительно позже. Ядрышко - сферическое образование (1-5 мкм в диаметре) хорошо воспринимающее основные красители и располагающееся среди хроматина. В одном ядре может содержаться от 1 до 4-х и даже более ядрышек. В молодых и часто делящихся клетках размер ядрышек и их количество увеличены. Ядрышко не является самостоятельной структурой. Оно формируется только в интерфазе в определенных участках некоторых хромосом - ядрышковых организаторах, в которых содержатся гены, кодирующие молекулу Рис-13. Данная схема указывает на роль ядра в синтезе белка. рибосомальной РНК. В области ядрышкового анализатора осуществляется транскрипция с ДНК рибосомальной РНК. В ядрышке происходит соединение рибосомальной РНК с белком и образование субъединиц рибосом. Микроскопически в ядрышке различают: 32 -фибриллярный компонент - локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида (РНП); -гранулярный компонент - локализуется в периферической части ядрышка и представляет скопление субъединиц рибосом. В профазе митоза, когда происходит спирализация хроматиновых фибрилл и образование хромосом, процессы транскрипции РНК и синтеза субъединиц рибосом прекращаются и ядрышко исчезает. По окончании митоза в ядрах вновь образованных клеток происходит деконденсация хромосом и появляется ядрышко. Кариоплазма (нуклеоплазма) или ядерный сок состоит из воды, белков и белковых комплексов (нуклеопротеидов, гликопротеидов), аминокислот, нуклеотидов, сахаров. Под световым микроскопом кариоплазма бесструктурна, но при электронной микроскопии в ней определяются гранулы (15 нм), состоящие из рибонуклеопротеидов. Белки кариоплазмы являются в основном белками-ферментами, в том числе ферментами гликолиза, осуществляющих расщепление углеводов и образование АТФ. Негистоновые (кислые) белки образуют в ядре структурную сеть (ядерный белковый матрикс), которая вместе с ядерной оболочкой принимает участие в создание внутреннего порядка, прежде всего в определенной локализации хроматина. При участии кариоплазмы осуществляется обмен веществ в ядре, взаимодействие ядра и цитоплазмы. И так суммируя структур клетки можно составимить следующую схему(Рис-14). Функции ядер соматических и половых клеток Функции ядер соматических клеток: -хранение генетической информации, закодированной в молекулах ДНК; -репарация (восстановление) молекул ДНК после их повреждения с помощью специальныхрепаративных ферментов; -редупликация (удвоение) ДНК в синтетическом периоде интерфазы; -передача генетической информации дочерним клеткам во время митоза; 33 Рис-14 14-рис. -реализация генетической информации, закодированной в ДНК, для синтеза белка и небелковых молекул: образование аппарата белкового синтеза информационной, рибосомальной и транспортной РНК. Функции ядер половых клеток: -хранение генетической информации; -передача генетической информации при слиянии женских и мужских половых клеток. 2.8.Жизненный цикл клетки Клеточный, или жизненный, цикл клетки - это время существования клетки от деления до следующего деления, или от деления до смерти. Для разных типов клеток клеточный цикл различен. В организме млекопитающих и человека различают следующие три группы клеток, локализующиеся в разных тканях и органах: 34 -часто делящиеся клетки (малодифференцированные клетки эпителия кишечника, базальные клетки эпидермиса и другие); -редко делящиеся клетки (клетки печени - гепатоциты); -неделящиеся клетки (нервные клетки центральной нервной системы, меланоциты и другие). Жизненный цикл у этих клеточных типов различен. Жизненный цикл у часто делящихся Рис-15 клеток - это время их существования Цикл клетки от начала деления до следующего деления. Жизненный цикл таких клеток нередко называют митотическим циклом. Такой клеточный цикл подразделяется на два основных периода: -митоз или период деления; -интерфаза - промежуток жизни клетки между двумя делениями. Репродукция клеток Различают два основных способа размножения клеток: -митоз (кариокенез) - непрямое деление клеток, которое присуще в основном соматическим клеткам; -мейоз или редукционное деление - характерно только для половых клеток. В литературе нередко описывают третий способ деления клеток - амитоз или прямое деление клеток, которое осуществляется посредством перетяжки ядра и цитоплазмы, с образованием двух дочерних клеток или одной двуядерной. Однако в настоящее время принято считать, что прямой способ деления характерен только для старых и дегенерирующих клеток и является отражением патологии клетки. Возможен четвертый тип репродукции клетки - эндорепродукция, характеризуется увеличением объема клетки, увеличением количеством ДНК в хромосомах, увеличивается количество функциональных органелл. Клетка является 35 гипертрофированной, но к увеличению числа клеток эндорепродукция не приводит, а лишь повышается функциональная активность клеток. Она наблюдается в клетках печени - гепатоцитах, в эпителии мочевого пузыря. Отмеченные выше два основных периода в жизненном цикле часто делящихся клеток (митоз и интерфаза) в свою очередь подразделяются на фазы или периоды. Митоз подразделяется на 4 фазы и в каждой фазе происходят определенные структурные преобразования (Рис-16). 1. Профаза характеризуется морфологическими изменениями ядра и цитоплазмы. В ядре происходит: конденсация хроматина и образование хромосом, состоящих из двух хроматид, исчезновение ядрышка, распад кариолеммы на отдельные пузырьки. В цитоплазме отмечается редупликация (удвоение) центриолей и расхождение их к противоположным полюсам клетки, формирование из микротрубочек веретена деления, репродукция зернистой Рис-16 эндоплазматической сети, а также уменьшение числа свободных и прикрепленных рибосом. 2. В метафазе происходит образование метафазной пластинки, или материнской звезды, неполное обособление сестринских хроматид друг от друга. 36 3. Анафаза характеризуется полным обособлением (расхождением) хроматид и образованием двух равноценных диплоидных наборов хромосом, расхождением хромосомных наборов к полюсам митотического веретена и расхождением самих полюсов. 4.Телофаза характеризуется деконденсацией хромосом каждого хромосомного набора, формированием из пузырьков ядерной оболочки, цитотомией - перетяжкой двуядерной клетки на две дочерние самостоятельные клетки, появлением ядрышка в ядрах дочерних клеток. Интерфаза подразделяется на 3 периода: -J1, или пресинтетический; -S, или синтетический; -J2, или постсинтетический. Особенности периодов митоза Каждый период митоза характеризуется прежде всего некоторыми функциональными особенностями. В J1 (пресинтетическом) периоде происходит: -усиленное формирование синтетического аппарата клетки - увеличение числа рибосом, а также количества различных видов РНК (информационной, рибосомальной, транспортных); -усиление синтеза белков, необходимых для роста клетки; -подготовка клетки к синтетическому периоду - синтез ферментов, необходимых для образования новых молекул ДНК. Для S-периода характерно удвоение (редупликация) ДНК, что приводит к удвоению плоидности диплоидных ядер и является обязательным условием для последующего митотического деления клетки. J2-период (постсинтетический, или премитотический) характеризуется усиленным синтезом информационной РНК, а также усиленным синтезом всех клеточных белков, но особенно белков-тубулинов, необходимых для последующего (в профазе митоза) формирования митотического веретена деления. Описанные закономерности жизненного цикла характерны прежде всего для часто делящихся клеток. 37 Однако клетки некоторых тканей (например, клетки печеночной ткани - гепатоциты), по выходе из митоза, вступают в так называемый J0-период, во время которого они выполняют свои многочисленные функции в течение многих лет, не вступая в S- период. Однако при определенных обстоятельствах (при поражении или удалении части печени) они вступают в нормальный клеточный цикл, то есть в S-период, синтезируют ДНК, а затем митотически делятся. Такие клетки относятся к редко делящимся клеткам, и |