Главная страница
Навигация по странице:

  • Генетика. М, 1967, стр. 18.

  • № 4, стр. 71.

  • В. И. Купцов детерминизм вероятность издательство политической литературы Москва 1976 L. M


    Скачать 1.32 Mb.
    НазваниеВ. И. Купцов детерминизм вероятность издательство политической литературы Москва 1976 L. M
    Дата09.07.2018
    Размер1.32 Mb.
    Формат файлаpdf
    Имя файла1kuptsov_v_i_determinizm_i_veroyatnost.pdf
    ТипДокументы
    #48439
    страница12 из 17
    1   ...   9   10   11   12   13   14   15   16   17
    156
    ятностно-статистических закономерностей. Оно в принципе всегда будет носить вероятностный характер. Описанное выше обоснование использования вероятностно-статистических методов по существу касалось лишь их применения на эмпирическом уровне науки. Высоко оценивая эти методы в качестве средств эмпирического познания, ученые обращали внимание на то, что они могут быть эффективны лишь в сочетании с теоретическими представлениями, те. только тогда, когда понятна качественная специфика объекта, когда имеется четкое теоретическое представление о характере задачи. Только в этом случае возможны и квалифицированное проведение исследования, и правильная интерпретация полученных результатов. Именно такой теоретичности прежде всего не хватало А. Кет- леи его последователям. Для лучшего уяснения этой гносеологической ситуации весьма полезно обратиться к истории проблемы наследственности. Как отмечалось выше, одним из первых приложений статистических методов в биологии была попытка при их помощи разрешить как раз эту проблему. Как осуществляется процесс наследования, по каким законам Почему дети оказываются похожими на своих родителей Чем объяснить то, что одни гибриды оказываются вполне жизнеспособными, в то время как другие нет Эти и подобные им вопросы, имеющие огромную теоретическую и практическую важность, долгое время не могли получить научно обоснованных ответов. В результате о наследственности
    157
    имели хождения самые удивительные представления. Как отмечает А. Мюнтцинг, в X V I I I в. в Швеции происходила так называемая овсяная битва, которая возникла в результате острых споров о возможности превращения овса в рожь. А во Франции в тоже время серьезно обсуждались хозяйственные качества якобы полученного гибрида между лошадью и коровой. Даже знаменитый Вольтер принимал в этой дискуссии активное участие. В литературе разных времен можно было встретить поистине фантастические сообщения на эти темы. Тот же Мюнт- цинг приводит интереснейшие примеры такого рода. Казалось пишет он что такое странное животное, как жирафа, едва ли могло быть сотворено сколько-нибудь серьезным божеством поэтому предполагали, что жирафа произошла от скрещивания верблюда с леопардом. Верблюда считали участником и другого мезальянса — с воробьем (!), в результате которого произошел страус Успех в решении проблем наследования пришел лишь в середине X I X в. и связан был, как известно, прежде всего с работами Г. Менделя. Однако здесь нас будут интересовать исследования наследственности, произведенные Ф. Гальтоном. Судьба полученных им результатов была очень похожа на судьбу открытий А. Кетле. Она не раз служила предостережением ученым против абсолютизации статистических методов как средства познания, указывала на их вспомогательный характер. А. Мюнтцинг. Генетика. М, 1967, стр. 18.
    158 Ф. Гальтон, поставив перед собой цель изучить закономерности наследования, решил подойти к этой проблеме во всеоружии статистических методов. Наследование любого свойства живого организма опосредствуется массой внешних, случайных по отношению к данному процессу, причин. Так почему бы не исследовать его, воспользовавшись опытом социальных статистиков, их статистическими методами Вполне можно ожидать, что закономерности наследования раскроются при изучении массового материала, когда отдельные случайные внешние воздействия взаимно компенсируют друг друга. Опираясь на эти соображения, Гальтон провел статистическое исследование роста родителей и их потомства для различных биологических объектов. Полученные данные убедительно свидетельствовали о существовании корреляции между изучаемыми величинами. Анализируя свои результаты, Галь- тон сформулировал закон регрессии, согласно которому наследование признаков происходит таким образом, что отклонение от среднего у родителей в следующем поколении наследуется частично, имея тенденцию нивелироваться. Аналогичные исследования позже проводились не рази неизменпо приводили к результату, полученному Гальтоном. Казалось очевидным, что установлен действительный закон наследования. И все же, хотя с чисто статистической точки зрения исследования
    Гальтона были безупречны, его выводы оказались неверными с собственно биологической точки зрения.
    159
    Более поздние исследования В. Иоганнсе- на обосновали совершенно иной вывод. Для своих опытов Иоганнсен выбрал фасоль и стал анализировать наследование по признаку веса. Для него было очевидным, что Галь- тон имел дело с неоднородным в генетическом отношении материалом. Чтобы исключить эту неоднородность, он специально изучал наследование веса в пределах ряда генетических линий. Для этого Иоганнсен получал потомство от каждого из растений путем самоопыления и затем делал статистический анализ наследования веса, не смешивая различные генетические линии. Результат был совершенно отличным оттого, к которому пришел Гальтон. В пределах генетически однородного материала ни полного, ни частичного наследования отклонений от среднего не происходило. Модификации особи оказались ненаследуемыми. Под влиянием внешней среды даже в генетически однородном материале всегда наблюдаются отклонения в разные стороны от нормы. Но если получить потомство от самых легких и самых тяжелых семян одной генетической линии, их распределения не будут отличаться друг от друга. Таким образом, оказалось, что Гальтон сделал неправильный вывод потому, что он не учел нив постановке своего исследования, нив истолковании его результатов генетической неоднородности анализируемых им объектов. Статистика писал в связи с этим Иоганнсен,— слишком легко стирает различия в материале создается впечатление однородности там, где на самом деле имеется смесь. одновременно нос ней должны применяться более тонкие анализы, что осуществимо только с помощью биологических опытов Результат Ф. Гальтона вступил в противоречие и с выводами Г. Менделя. Ведь сточки зрения последнего, признаки могут передаваться только целиком и никакого частичного наследования быть не может. Эта история поучительна не только вот- ношении использования вероятностно-стати- стических методов в науке. Она убедительно свидетельствует о большой важности теоретических предпосылок в любом эмпирическом исследовании. Она подтверждает ту мысль, что не может быть чисто эмпирических исследований, которые бы заслуживали название научных. Обоснование использования вероятност- но-статистических методов на эмпирическом уровне научного познания с позиций лапла- совского детерминизма, как мы видели, было довольно основательным. Найти в нем уязвимые места, сколько-нибудь серьезные логические бреши представляется делом непростым. Это, несомненно, свидетельствует о больших возможностях концепции лапла- совского детерминизма. Однако самые серьезные трудности, возникшие перед сторонниками этой концепции в связи с применением в науке вероятностно-статистических методов, следует искать все-таки не здесь. Эмпирический уровень науки может включать в себя всякого рода характеристики,
    1
    В. Иоганнсен. Элементы точного учения об изменчивости и наследственности. МЛ, 1933, стр. 130.
    6 В. И. Купцов
    161
    обусловленные особенностями познавательного процесса. Здесь это допускается. Ведь между этим уровнем познания и существенными связями действительности имеется еще теория. В теории совершается тот качественный скачок, который элиминирует все субъективное в познавательном процессе и оставляет ее один на один с природой. Теория и только теория описывает сами законы действительности. Так считали сторонники лапла- совской концепции детерминизма. Поэтому для них проблема обоснования использования вероятностно-статистических методов как средств эмпирического познания, конечно, не могла представляться принципиально значимой, сомнений в возможности такого обоснования не могло и быть. Решение этой проблемы было, в сущности, делом методологической техники.
    § 4. Вероятность и теория Рассмотрим же теперь, какие возможности предоставляет концепция лапласовского детерминизма для обоснования применения вероятностно-статистических идейна теоретическом уровне. Сначала этой проблеме не придавалось особого значения. Попытки А. Кетле и его сторонников построить теорию социальных явлений на вероятностно- статистической основе провалились, молеку- лярно-кинетическая теория газов рассматривалась как уникальная теория, особенности которой обусловлены ненаблюдаемостью ее объектов, а первая вероятностная модель явлений наследования, предложенная Г. Мен- делем, не встретила никакого отклика в научной среде. Однако вскоре проблема привлекла к себе всеобщее внимание. В XX вона стала одной из актуальнейших философских проблем естествознания. Это объясняется прежде всего совершенно неожиданной экспансией вероятностно-статистических теорий в самых разных областях естествознания. Вслед за молекулярно-кинетической теорией газов в физике были созданы статистическая механика, физическая кинетика, статистическая электродинамика, квантовая механика, квантовая электродинамика, существенным образом опирающиеся на вероят- ностно-статистические идеи.
    Вероятностно-статистические методы широко используются сегодня ив биологических теориях. Основы генетики Г. Мен- деля воплотились в современной генетике, которая буквально пронизана вероятностно- статистическими идеями. И теория эволюции, построенная уже Ч. Дарвином, по существу, на статистической основе, в наше время получила вторую жизнь — в значительной мере за счет уточнения и развития ее вероят- ностно-статистического аспекта. Это стало возможным после того, как в работах ряда ученых был осуществлен долгожданный синтез менделевской генетики и дарвиновской теории эволюции. В результате вероятно- стно-статистическая основа теории эволюции была полностью осознана. С. С. Четвериков писал поэтому поводу следующее И ничего нет принципиально недопустимого в том, что в основу закономерного про

    163
    десса эволюции мы ставим случайное появление геновариаций, ибо теория вероятности учит нас тому, что случай подчиняется таким же законам, как и все на свете. И строить закономерный процесс эволюции на случайной игре отдельных возникающих геновариаций ничем не менее закономерно и логично, как строить закономерную теорию упругости газов на игре случайных ударов молекул газа о стенки сосуда Вероятностные и статистические методы все шире применяются сегодня при создании теоретических моделей в географии, психологии, педагогике, лингвистике, медицине, экономике. А какое большое внимание привлекли к себе в наше время кибернетика и теория информации, основательно использующие вероятностно-статистические представления Одним словом, сегодня стало очевидным, что вероятность и статистика в теории это не эпизод в науке, а нечто серьезное и требующее основательного истолкования. Как же можно истолковать этот феномен истории науки с позиций концепции лапла- совского детерминизма Как спасти эту концепцию от стремительного наступления вероятностно-статистических идей Возможностей здесь не так ужи много. Ее, конечно, можно было бы спасти путем отказа от признания за научной теорией обязанностей
    1
    С. С. Четвериков О некоторых моментах эволюционного процесса сточки зрения современной генетики Бюллетень Московского общества испытателей природы, отдел биологический, 19#5,
    № 4, стр. 71.
    164 описания объективного мира. Этот радикальный путь надежно заслонил бы нашу концепцию от разъедающего воздействия реальных фактов истории науки. Однако такое ренегатство, никогда не бывшее в почете у ученых, превратило бы ее в совершенно бесплодную в методологическом отношении доктрину. В этом случае утверждение о том, что все в мире однозначно детерминировано, никак не могло бы помочь ученому. Оно ведь не в состоянии влиять каким-либо образом на его деятельность и, следовательно, становится для него ненужным. Но подобный ход мысли обесценивает не только лап- ласовскую, но и любую другую картину мира. В сущности, он оказывается нечем иным, как воплощением позитивистского подхода к методологии науки, который исключает из сферы рационального какие-либо рассуждения о мире. И этот способ разрешения противоречия между концепцией лапласовского детерминизма и развитием науки является, по сути дела, актом ее самоуничтожения. Можно, однако, пойти и по другому пути, который не уводит с позиций материализма в трактовке сущности научного познания. Но он требует широкого подхода к проблеме, активизации потенциально имеющихся возможностей концепции лапласовского детерминизма, умения следовать не букве, а духу ее. Суть подхода может быть выражена так. Теории отражают то, что происходит в самой действительности. Но ведьмы видели, что в мире существуют не только фундаментальные однозначные законы, но и случайности, и вероятностные отношения, и статистические закономерности. Они также объективны, как и первые, являясь определенными их следствиями. Поэтому могут быть теории, описывающие статистические закономерности явлений, включающие в себя случайность и вероятность. Но нужно, конечно, иметь ввиду, что такие теории принципиально неполны и не могут быть поставлены в один ряд с теориями, вскрывающими однозначные причинные законы. Существование их оправдано лишь практическими соображениями. Если бы удалось преодолеть временную ограниченность науки и создать во всех ее областях теории, дающие полное детальное описание любых явлений на основе однозначных законов, то вероят- ностно-статистические теории все равно сохранили бы свою практическую важность. Ведь они дают возможность вычислять поведение объектов кратчайшим путем, используя минимум информации. Однако в принципиальном плане мы должны исходить из того, что такие теории не могут иметь самостоятельного статуса. Всю информацию, которую человек извлекает, опираясь на подобную теорию, можно получить из соответствующей более полной теории, опирающейся на динамические законы. Многие статистические теории строятся непосредственно на основе динамических законов, и здесь со всей очевидностью проявляется вспомогательный, практический характер вероятностно-стати- стических идей. Возьмем, к примеру, моле- кулярно-кинетическую теорию газов. Системы, которые она изучает, полностью детерминированы. Но раскрыть все детали по
    166 природе своей однозначного поведения объекта этой теории нет практической возможности, и поэтому мы вынуждены прибегать к помощи вероятностно-статистических методов. Имеются и статистические теории, в которых отсутствует в явном виде детерминистская основа. В этом случае ее следует обязательно предполагать в качестве фундамента для обоснования таких теорий. Этой позиции нельзя отказать в последовательности. Сохраняя в неприкосновенности главное ядро концепции лапласовского детерминизма, она дает искусное обоснование применения вероятностно-статистиче- ских методов даже на теоретическом уровне науки. В сочетании с описанным выше обоснованием их использования в качестве средств эмпирического познания она раскрывает общую картину тех возможностей, которыми обладает концепция лапласовского детерминизма в плане истолкования роли ве- роятностно-статистических идей в науке. Но это уже, конечно, новая, еще более богатая версия обсуждаемой концепции. Для того чтобы яснее представить направление эволюции концепции, рассмотрим более внимательно попытки обоснования использования вероятностно-статистических методов на теоретическом уровне познания. При этом мы будем анализировать прежде всего тот материал, который связан с физикой, поскольку в этой науке мы имеем, с одной стороны, наиболее простые объекты исследования, ас другой — наиболее совершенные формы применения вероятностно-стати- стических идей в теоретических построениях.
    167
    Как отмечалось выше, первые успехи обращения к вероятности и статистике для решения теоретических проблем в физике были связаны с созданием молекулярно-кинетиче- ской теории. Опираясь на молекулярно-кине- тические представления, здесь удалось математически вывести прежде лишь эмпирически фиксируемые закономерности поведения газов. Газ, заключенный в некотором объеме, рассматривался как гигантская совокупность движущихся с различными скоростями одинаковых молекул. Эта теоретическая модель была построена в полном соответствии с канонами классических представлений об однозначной детерминации любого материального процесса. В этом смысле новая научная теория находилась в полном согласии с идеалом научной теории, сформировавшимся в рамках концепции лапласовского детерминизма. Однако согласие было лишь номинальным. Реально воспользоваться методами классической механики для вычисления интересующих физика эффектов не было никакой возможности. Ведь для этого пришлось бы решить гигантское число уравнений, непосильное не только человеческому мозгу, но даже современным ЭВМ. Если же вспомнить еще о необходимости (для получения решений уравнений) собрать информацию о некотором начальном расположении буквально мириад непосредственно ненаблюдаемых молекул, то становится совершенно ясной бесперспективность такого пути. Но если столб нельзя перепрыгнуть, то его можно обойти. Зачем вычислять движение каждой молекулы, если нам вполне достаточно некоторых совокупных сведений о поведении ансамбля частиц в целом Пусть, к примеру, мы хотим знать давление газа при постоянных температуре и объеме. Очевидно, что для нас здесь не имеет значения, как ведет себя таили иная молекула. Ясно, что давление не изменится, если, скажем, две какие-либо молекулы обменяются своими динамическими траекториями. Нов таком случае можно попытаться решить задачу, исходя из гораздо меньшей информации, чем та, которую можно было бы получить, решив системы уравнений, описывающих микроповедение газа. Здесь-то и приходят на помощь вероятностно-статистические методы. Пусть наш газ находится в закрытом сосуде. Согласно принятой идеализации он является совокупностью движущихся по законам механики молекул. Его микромеханиче- ское состояние в данный момент времени полностью определяется скоростями и положениями всех составляющих его молекул. Оно может быть изображено точкой в многомерном пространстве, число измерений которого равно удвоенному числу степеней свободы системы. Тогда эволюция газа будет представляться некоторой кривой в этом пространстве. В особом, но очень важном случае, когда система изолирована от внешней среды и, следовательно, ее энергия сохраняет постоянное значение, изменение состояний системы будет изображаться траекториями, расположенными на изоэнергетической поверхности. Любая макроскопическая величина, скажем давление, которое
    1   ...   9   10   11   12   13   14   15   16   17


    написать администратору сайта