Шпоры по матану(1 курс). 1. Функция, одз
Скачать 0.69 Mb.
|
6 Линейные дифференциальные уравнения с постоянными коэффициентами. Уравнения с правой частью специального вида.y” + py’ + qy = f(x) Алгоритм решения
y” + py’ + qy = 0, соответствующего заданному неоднородному уравнению. Для этого необходимо сначала решить характеристическое уравнение 2 + p + q = 0. В зависимости от решения характеристического уравнения необходимо записать общее решение однородного линейного уравнения. Возможны следующие случаи:
Y = C1e1x + C2e2x; C1, C2 = const.
Y = C1ex + C2ex; C1, C2 = const.
Y = C1ex sinx + C2excosx, C1, C2 = const.
Поиск частных решений линейных дифференциальных уравнений второго порядка с постоянными коэффициентами y” + py’ + qy = f(x)
III. Общее решение неоднородного линейного уравнения находится как сумма общего решения однородного линейного уравнения и частного решения неоднородного линейного уравнения y = φ(x) + Y 7 Нормальная система дифференциальных уравнений. Векторная запись нормальной системы.Общий вид дифференциального уравнения первого порядка есть F(x,y,y)=0. Если это уравнение можно разрешить относительно у, т.е. записать в виде у=f(x,y), то говорят, что уравнение записано в нормальной форме (или в форме Коши). Рассмотрим геометрическую трактовку нахождения решений уравнения. Возьмём некоторую точку (x0,y0) из области определения D функции f(x,y). Пусть у=(х) – интегральная кривая, проходящая через эту точку. Из уравнения вытекает, что (х0)=(х0,у0). Таким образом, угловой коэффициент касательной к интегральной кривой, проходящей через точку (х0,у0) равен (прих=х0) числу f(х0,у0). Построим теперь для каждой точки (х0,у0) из области определения прямую, проходящую через эту точку и имеющую угловой коэффициент, равный f(х0,у0). В этом случае принято говорить, что эта прямая определяет направление в точке (х0,у0), а на множестве D задано поле направлений. Если каждое уравнение, входящее в систему, является дифференциальным, т.е. имеет вид соотношения, связывающего неизвестные функции и их производные, то говорят о системе дифференциальных уравнений. Так система дифференциальных уравнений первого порядка с двумя неизвестными функциями записывается обычно в виде (t,x1,x2, dx1/dt,dx2/dt)=0 ( t,x1,x2, dx1/dt,dx2/dt)=0. На системы дифференциальных уравнений естественным образом обощается постановка задачи Коши для одного уравнения. Например, в случае данной системы задача Коши состоит в нахождении решения х1(t),x2(t), удовлетворяющих начальным условиям х1(t0)= х10, x2(t0)= x20, где t0, х10, x20 – заданные числа. Для случая системы может быть доказана теорема существования и единственности решения задачи Коши, аналогичная теореме для одного уравнения. |