Гистология. 1. Методы гистологических исследований световая, электронная микроскопия
Скачать 2.37 Mb.
|
59. Лимфоциты. Развитие, строение, количество и функция. Лимфоциты составляют 19-37 %. (1-4 х 10 9 ) В зависимости от размеров лимфоциты подразделяются на малые (диаметр менее 7 мкм; 90%), средние (диаметр 8-10 мкм; 10%) и большие (диаметр более 10 мкм; менее 1%). Ядра лимфоцитов чаще круглые, реже вогнутые. Цитоплазма слабо базофильна, содержит небольшое количество органелл общего значения, имеются азурофильные гранулы, т. е. лизосомы. При электронно-микроскопическом исследовании было установлено 4 разновидности лимфоцитов: 1) малые светлые, составляют 75 %, их диаметр равен 7 мкм, вокруг ядра располагается тонкий слой слабо выраженной цитоплазмы, в которой содержатся слабо развитые органеллы общего значения (митохондрии, комплекс Гольджи, гранулярная ЭПС, лизосомы); 2) малые темные лимфоциты, составляют 12,5%, их диаметр 6-7 мкм, ядерно-цитоплазматическое отношение смещено в сторону ядра, вокруг которого еще более тонкий слой резко базофильной цитоплазмы, в которой содержится значительное количество РНК, рибосом, митохондрий; другие ор- ганеллы отсутствуют; 3) средние составляют 10-12 %, их диаметр около 10 мкм, цитоплазма слабо базофильна, в ней со- держатся рибосомы, ЭПС, комплекс Гольджи, азурофильные гранулы, ядро имеет круглую форму, иногда имеет вогнутость, содержит ядрышки, имеется рыхлый хроматин; 4) плазмоциты, составляют 2 %, их диаметр 7-8 мкм, цитоплазма окрашивается слабо базофильно, около ядра имеется неокрашиваемый участок — так называемый дворик, в котором содержится комплекс Гольджи и клеточный центр, в цитоплазме хорошо развита гранулярная ЭПС, в виде цепочки опоясы- вающая ядро. Функция плазмоцитов — выработка антител. Функционально лимфоциты делятся на В-, Т- и О-лимфоциты. В-лимфоциты вырабатываются в красном костном мозге, проходят специализацию в лимфатических узлах, превращаясь в лимфобласты, а затем либо в В-клетки памяти, либо в плазмоциты. Функция В-лимфоцитов — выработка антител, т. е. иммуноглобулинов. Иммуноглобулины В- лимфоцитов являются их рецепторами, которые могут быть сконцентрированы в определенных местах, могут быть диффузно рассеяны по поверхности цитолеммы, могут перемещаться по поверхности клетки. В- лимфоциты имеют рецепторы к антигенам и эритроцитам барана. В-лимфоциты являются короткоживущими клетками, отвечают за гуморальный иммунитет. Т-лимфоциты подразделяются на Т-хелперы, Т-супрессоры и Т-киллеры. Т-хелперы и Т-супрессоры регулируют клеточный иммунитет. В частности, под влиянием Т-хелперов повышается пролиферация и дифференцировка В-лимфоцитов и синтез антител в В-лимфоцитах. Под влиянием лимфокинов, выделяемых Т-супрессорами, пролиферация В-лимфоцитов и синтез антител подавляются. Т-киллеры участвуют в клеточном иммунитете, т. е. они уничтожают генетически чужеродные клетки. К киллерам относятся К-клетки, которые убивают чужеродные клетки, но только при наличии к ним антител. О- лимфоциты недифференцированы и относятся к резервным лимфоцитам. Морфологически различить В- и Т-лимфоциты не всегда возможно. В то же время в В-лимфоцитах лучше развита гранулярная ЭПС, в ядре имеются рыхлый хроматин и ядрышки. Лучше всего Т- и В- лимфоциты можно различить при помощи иммунных и иммуноморфологических реакций. Продолжительность жизни Т-лимфоцитов составляет от нескольких месяцев до нескольких лет, В- лимфоцитов — от нескольких недель до нескольких месяцев. Стволовые клетки крови (СКК) морфологически не отличимы от малых темных лимфоцитов. Если СКК попадают в соединительную ткань, то они дифференцируются в тучные клетки, фибробласты и др. 60. Гемограмма и лейкоцитарная формула. Возрастные особенности. Значение в диагностике заболеваний. В медицинской практике анализ крови играет большую роль. При клинических анализах исследуют химический состав крови, определяют количество эритроцитов, лейкоцитов, гемоглобина, резистентность эритроцитов, быстроту их оседания – скорость оседания эритроцитов (СОЭ) и др. Качественный состав крови (анализ крови) определяется такими понятиями, как гемограмма и лейкоцитарная формула. Гемограмма – количественное содержание форменных элементов крови в одном литре. Лейкоцитарная формула – это процентное содержание отдельных форм лейкоцитов. Возрастные изменения в крови Число эритроцитов в момент рождения и в первые часы жизни выше, чем у взрослого человека, и достигает 6,0 – 7,0х10^12 в 1 л. К 10-14 сут оно равно тем же цифрам, что и во взрослом организме. В последующие сроки происходит снижение числа эритроцитов с минимальными показателями на 3-6 м месяце жизни (физиологическая анемия). Число эритроцитов становится таким же, как и во взрослом организме, в период полового созревания. Для новорожденных характерно наличие анизоцитоза (разнообразие размеров) с преобладанием макроцитов, увеличенное содержание ретикулоцитов, а также присутствие незначительного числа ядросодержащих предшественников эритроцитов. Число лейкоцитов у новорожденных увеличено и достигает 10,0 – 30,0х10^9 в 1 л. В течение 2 недель после рождения число их падает до 9,0-15,0х10^9 в 1 л. Количество лейкоцитов достигает к 14-15 годам уровня, который сохраняется у взрослого. Соотношение числа нейтрофилов и лимфоцитов у новорожденного такое же, как и у взрослых, - 4,5 – 9,0х10^9 в 1 л. В последующие сроки содержание лимфоцитов возрастает, а нейтрофилов падает, и, т.о., к 4-м суткам количество этих видов лейкоцитов уравнивается (первый физиологический перекрест лейкоцитов). Дальнейший рост числа лимфоцитов и падение нейтрофилов приводят к тому, что на 1-2 году жизни лимфоциты составляют 65%, а нейтрофилы – 25%. Новое снижение числа лимфоцитов и повышение нейтрофилов приводят к выравниванию обоих показателей у 4-летних детей (второй физиологический перекрест). Постепенное снижение содержания лимфоцитов и повышение нейтрофилов продолжаются до полового созревания, когда количество этих видов лейкоцитов достигает нормы взрослого. 61.Этапы кроветворения в эмбриональном и постэмбриональных периодах развития. Гемопоэз – развитие крови. Различают эмбриональный гемопоэз, который происходит в эмбриональный период и приводит к развитию крови как ткани, и постэмбриональный гемопоэз, который представляет собой процесс физиологической регенерации крови. Эмбриональный гемопоэз. В развитии крови как ткани в эмбриональный период можно выделить 3 основных этапа: 1) Мезобластический (желточный), когда начинается развитие клеток крови во внезародышевых органах и появляется первая регенерация стволовых клеток крови. (с 3-й по 9-ю неделю) 2) Печеночный (гепатотимусолиенальный), который начинается в печени с 5-6-й недели развития плода, когда печень становится основным органом гемопоэза, в ней образуется вторая регенерация СКК. Кроветворение в печени достигает максимума через 5 мес и завершается перед рождением. 3) Медуллярный (костномозговой) (медулло-тимусолимфоидный)– появление третьей генерации СКК в костном мозге, где гемопоэз начинается с 10-й недели и постепенно нарастает к рождению, а после рождения красный костный мозг становится центральным органом гемопоэза. Желточный этап. Начиная со 2-3 недели эмбриогенеза, в мезенхиме желточного мешка в результате пролиферации мезенхимных клеток образуются «кровяные островки», представляющие собой очаговые скопления мезенхимных клеток. Затем происходит дивергентная дифференцировка этих клеток. Периферические клетки, ограничивающие островки, уплощаются, соединяются между собой и образуют эндотелиальную выстилку сосуда. Центральные клетки округляются, превращаясь в стволовые кроветворные клетки. Из этих клеток в сосудах, т.е. интраваскулярно начинается процесс образования первичных эритроцитов. Они характеризуются: - крупными размерами и называются мегалобластами. В их цитоплазме накапливается гемоглобин, ядро у некоторых удаляется, а в других сохраняется. В результате образуются первичные эритроциты, отличающиеся бОльшими, чем у нормацитов размерами; -наличием ядра; -содержанием особого вида гемоглобина – HbP (эмбрионального). Такой тип кроветворения называется мегабластическим. Он характерен для ранних этапов эмбриогенеза. Одновременно начинается нормобластическое кроветворение с образованием нормоцитов, содержащих фетальный гемоглобин. Часть стволовых клеток оказывается вне сосудов (экстраваскулярно) и из них начинают развиваться зернистые лейкоциты, которые затем мигрирует в сосуды. Начиная с 4-й недели эмбриогенеза желточный этап кроветворения угасает и к концу 3-го месяца он полностью прекращается. Итог этапа – образование стволовых клеток крови первой генерации. На 3-й неделе в мезенхиме тела зародыша начинают формироваться сосуды. На первых порах они являются пустыми щелевидными образованиями. Из желточного мешка СКК мигрируют в тело зародыша и заселяют закладки будущих кроветворных органов. Второй этап – гепатотимусолиенальный начинается на 5-й неделе эмбриогенеза в печени, экстраваскулярно – по ходу капилляров, врастающих с мезенхимой внутрь печени. В печени активно развиваются стволовые клетки второй генерации и из них образуются эритроциты и гранулоциты до конца 5-го месяца, затем процесс гемоцитопоэза там постепенно снижается. Тимус начинает заселяться СКК, начиная с 7-8 недели, дает начало Т-лимфоцитам. Селезенка заселяется СКК на 7-8 неделе, в ней экстраваскулярно начинается универсальное кроветворение, т.е. происходит миело- и лимфоцитопоэз. Особенно активно кроветворение происходит в селезенке с 5 по 7-й месяцы, затем миелоидное кроветворение постепенно угасает и к концу эмбриогенеза оно полностью прекращается. Лимфоидное кроветворения осуществляется здесь как в эмбриогенезе, так и в постнатальном периоде. Третий период эмбрионального кроветворения – медулло-тимусолиенальный. Закладка костного мозга осуществляется во 2-м месяце эимбриогенезе. Кроветворение в нем начинается с 4-го месяца закладка СКК третьей генерации, а с 6-го месяца он является основным органом миелоидного и частично лимфоидного кроветворения, т.е. органом универсального гемоцитопоэза. В это же время в тимусе, селезенке и лимфатических узлах происходит лимфоидное кроветворение. Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови, который компенсирует физиологическое разрушение дифференцированных клеток. 66, 67, 68, 69. Развитие кости из мезенхимы на месте хряща. Строение кости как органа. Регенерация и трансплантация костей. Строение пластинчатой и ретикулофиброзной костной ткани. Классификация, развитие, строение и изменения под влиянием факторов внешней и внутренней среды. Регенерация и возрастные изменения. КОСТНЫЕ ТКАНИ Костные ткани характеризуются наличием в них плотного межклеточного вещества. Функции костных тканей: 1) опорно-механическая и 2) депонирование солей. В состав костной ткани входит 70% минеральных солей, остальное – вода и органические вещества. Среди органического вещества преобладает коллаген I типа, есть неколлагеновые белки, лимонная и ходриатинсерная кислоты, остеонектин (склеивающее вещество). Классификация костных тканей основана на расположении (ориентации) коллагеновых волокон. По этому признаку костные ткани подразделяются на: 1) ретикулофиброзную и 2) пластинчатую. Ретикулофиброзная костная ткань характеризуется грубыми пучками коллагеновых волокон, оринтированных в различных напрвлениях. В межклеточном веществе имеются остеоциты отросчатой формы, расположенные в костных лакунах. После рождения эта ткань имеется в местах сращения костей черепа и местах прикрепления сухожилий к костной ткани. Пластинчатая костная ткань характеризуется тем, что коллагеновые волокна располагаются параллельно друг другу и образуют пластинки. Клетки костной ткани включают 2 дифферона: 1) дифферон остеоцитов включает стволовые остеогенные клетки, полустволовые стромальные клетки, остеобласты, остеоциты; 2) дифферон остеокластов. Стволовые скелетогенные (остеогенные) клетки могут дифференцироваться в различных направлениях (в остеобласты, клетки стромы красного костного мозга). Дифферон остеоцитов (механоцитов). Остеобласты располагаются в надкостнице, эндосте, в каналах остеонов и в местах регенерации костной ткани, имеют удлиненную форму, длину 15-20 мкм, овальное ядро, оксифильную или базофильную цитоплазму, содержат хорошо развитую гранулярную ЭПС, комплекс Гольджи и митохондрии, высокую активность щелочной фосфатазы, не обладают способностью к митотическому делению. Функции остеобластов: 1) секреторная (вырабатывают склеивающее вещество остеонектин, коллаген 1 типа, из которого полимеризуются коллагеновые волокна, хондриатинсульфаты, лимонную кислоту); 2) участвуют в минерализации костной ткани за счет выделения щелочной фосфаиазы. Остеоциты расположены в костных лакунах, повторяющих форму этих клеток. Отростки остеоцитов проникают в костные канальцы, отходящие от лакун. В остеоцитах слабо развиты органеллы общего значения, ядра с грубыми глыбками хроматина, не содержат ядрышек (не активны), снижена их функциональная активность по сравнению с остеобластами. Функциональное значение остеоцитов заключается в поддержании гомеостаза костной ткани. Дифферон остеокластов. 1-й клеткой является стволовая клетка крови, потом целый ряд развивающихся кроветворных клеток, затем моноцит, который через стенку капилляра мигрирует в костную ткань и превращается в остеокласт (макрофаг). Размеры остеокластов достигают до 90 мкм, их форма – округлая, овальная, вытянутая, неправильная. С той поверхности, которая прилежит к костной ткани, в остеокласте имеется 2 зоны: 1) центральная, или гафрированная; 2) периферическая (зона плотного прилегания). В зоне плотного прилегания мало органелл, она плотная. Значение этой зоны заключается в том, что остеокласт плотно прилегает к костному веществу и создает герметическое пространство в области гафрированной зоны. Гафрированная зона представлена выростами, на поверхности которых адсорбированы ферменты. Над гафрированной зоной располагаются различные вакуоли, хорошо развитые лизосомы, содержащие протеолитические ферменты, имеются митохондрии. В цитоплазме остеокластов насчитывается от 3 до нескольких десятков ядер. Остеокласты локализуются в периваскулярных пространствах остеонов и в местах регенерации костной ткани. Функция остеокластов – разрушение межклеточного вещества костной ткани при помощи протеолитических ферментов лизосом. Для активации ферментов, остеокласты вырабатывают углекислый газ, который при взаимодействии с водой превращается в угольную кислоту, и создается кислая среда, в которой хорошо растворяются компоненты костной ткани. Развитие костной ткани (остеогенез). Костная ткань развивается двумя способами: 1) прямой остеогенез и 2) непрамой остеогенез. Прямой остеогенез характеризуется тем, что костное вещество развивается непосредственно из мезенхимы. Таким путем развиваются плоские кости. Непрямой остеогенез характеризуется тем, что вначале образуется хрящевая модель будущей кости, состоящая из гиалинового хряща, потом на месте этой модели формируется трубчатая кость. Прямой остеогенез включает 4 стадии развития: 1) образование остеогенных островков; 2) образование остеоидной ткани; 3) минерализация и 4) развитие на месте ретикулофиброзной костной ткани пластинчатой костной ткани. 1 стадия характеризуется тем, что мезенхимные клетки образуют остеогенные островки. Клетки островков дифференцируются в остеобласты, в цитоплазме которых хорошо развиты гранулярная ЭПС, комплекс Гольджи, митохондрии, содержится щелочная фосфатаза. Во время 2 стадии остеобласты секретируют коллаген I типа, остеонектин, т. е. межклеточное вещество. В результате образуются остеоидные (неминерализованные) балки, имеющие вытянутую форму. На поверхности этих балок остеобласты продолжают откладывать межклеточное вещество, балки при этом удлиняются и утолщаются. В процессе секреторной деятельности часть остеобластов замуровывает себя в межклеточном веществе и превращается в остеоциты, расположенные в лакунах. Вместо них из мезенхимы дифференцируются новые остеобласты, которые продолжают откладывать межклеточное вещество. Образовавшиеся балки соединяются своими концами, переплетаются и образуется остеоидное вещество. При наступлении 3-й стадии из остеобластов выделяется щелочная фосфатаза, которая разлагает глицерофосфаты на фосфорную кислоту и углеводы. Фосфорная кислота соединяется с кальцием, в результате чего образуется фосфорнокислый кальций, который в виде аморфного вещества откладывается в остеоидной ткани. В результате дальнейших преобразований фосфорнокислый кальций превращается в кристаллы гидрооксиапатитов, которые приклеиваются друг к другу и к коллагеновым волокнам при помощи остеонектина. В минерализации костной ткани принимают участие матриксные тельца, имеющие диаметр 1 мкм, содержащие гликоген и щелочную фосфатазу. Матриксные тельца образуются в результате выпячивания цитолеммы остеобластов и отделяются от этих клеток. В эти тельца откладывается кальций. Их участие в минерализации состоит из 2-х периодов: 1) образования кристаллов внутри везикул и 2) разрыв мембраны везикулы, выделения кристалла в межклеточное пространство и приклеивание его к коллагеновому волокну при помощи остеонектина (склеивающего вещества, вырабатываемого остеобластами). В результате минерализации образуется ретикулофиброзная ткань, которую еще называют первичной губчатой костной тканью. Вокруг этой ткани из мезенхимных клеток формируется надкостница, состоящая из 2 слоев: 1) внутреннего рыхлого остеогенного, в котором находятся остеобласты и 2) наружного волокнистого, более плотного. При 4-й стадии от надкостницы в образовавшуюся костную ткань проникают кровеносные сосуды, остеобласты и мезенхимоциты. Через стенку капилляров в костное вещество мигрируют моноциты, которые дифференцируются в остеокласты. Остеокласты начинают разрушать ретикулофиброзную костную ткань, проделывая в ней полости, различной формы. Вокруг кровеносных сосудов, находящихся в этих полостях (лакунах), остеобласты начинают формировать костные пластинки, накладывая их одну на другую и замуровывая себя в костном веществе, превращаясь в остеоциты. Наслоенные друг на друга костные пластинки называются остеонами. Остеоны переплетаясь образуют губчатое вещество костной ткани. Между переплетающимися остеонами располагаются мезенхимные и остеогенные клетки, прослойки соединительной ткани в которых проходят кровеносные сосуды. Так ретикулофиброзная костная ткань замещается пластинчатой. За счет остеобластов внутреннего слоя надкостницы вокруг костного зачатка начинают формироваться общие наружные костные пластинки, наслаивающиеся одна на другую, в результате вся формирующаяся кость окружается несколькими общими костными пластинками. В дальнейшем остеокластами разрушается образовавшаяся пластинчатая костная ткань, в образовавшихся лакунах вокруг сосудов остеобласты формируют новые остеоны. Такая перестройка костной ткани продолжается всю жизнь. |