13. Предметно-развивающая среда математической направленности в дошкольном учреждении. Организация игротек в разных возрастных группах.
Под развивающей предметно-пространственной средой следует понимать естественную комфортабельную обстановку, рационально организованную в пространстве и времени, насыщенную разнообразными предметами и игровыми материалами. В такой среде возможно одновременное включение в активную познавательно-творческую деятельность всех детей группы.
Концептуальная модель предметно-пространственной развивающей среды включает в себя три компонента: предметное содержание, его пространственную организацию и их изменения во времени.
Непременным условием построения развивающей среды в дошкольных учреждениях любого типа является реализация идей развивающего образования.
Младший дошкольный возраст: Целесообразно отвести в группе специальное место для игротеки. Там должны быть собраны игры, направленные на развитие сенсорного восприятия, мелкой моторики, воображения, речи. Играя, ребенок уточняет представления о свойствах предметов — форме, величине, материале. Используемые дидактические игры построены преимущественно по принципу вкладышей. Материалы должны быть достаточно крупными, прочными; «ярко» представлять различия по размеру, цвету, форме. В группах детей младшего дошкольного возраста основное внимание уделяется освоению приема непосредственного сравнения величин, предметов по количеству, свойствам. Из дидактических игр предпочтительны игры типа лото и парных картинок. Особый интерес у детей проявляется к так называемым «универсальным» множествам — логическим блокам Дьенеша и цветным счетным палочкам Кюизенера. Пособия интересны тем, что представляют несколько свойств одновременно (цвет, форму, размер, толщину в блоках; цвет, длину в палочках); в наборе много элементов, что активизирует манипулирование и игру с ними. На группу достаточно 1 —2-х наборов.
Средний дошкольный возраст:В этом возрасте происходят некоторые качественные изменения в развитии восприятия, чему способствует освоение детьми 4—5 лет некоторых сенсорных эталонов (формы, цвета, размерных проявлений). Дети успешно абстрагируют значимые свойства предметов. Используются материалы и пособия, которые позволяют организовать разнообразную практическую деятельность детей: пересчитать, соотнести, сгруппировать, упорядочить. С этой целью широко применяются различные наборы предметов (абстрактные: геометрические фигуры; «жизненные»: шишки, ракушки, игрушки и т. п.). Необходимы игры на сравнение предметов по различным свойствам (цвету, форме, размеру, материалу, функции); группировку по свойствам; воссоздание целого из частей (типа «Тан-грам», пазл из 12—24 частей); сериацию по разным свойствам; игры на освоение счета. На ковролине следует выставить знаковые обозначения разнообразных свойств (геометрические фигуры, цветовые пятна, цифры и др.). В данном возрасте организуются разнообразные игры с блоками на выделение свойств («Клады», «Домино»), группировку по заданным свойствам (игры с одним и двумя обручами). При применении цветных счетных палочек Кюизенера внимание обращается на различение по цвету и размеру и на установление зависимости цвет — длина — число. Для активизации интереса детей к данным материалам следует иметь разнообразные иллюстративные пособия. В математической игротеке могут быть размещены различные варианты книг, рабочих тетрадей для рассматривания и выполнения заданий. Используется наглядность в виде моделей: частей суток (в начале года — линейная; в середине — круговая), простых планов пространства кукольной комнаты. Основным требованием является предметно-схематическая форма данных моделей.
Старший дошкольный возраст: В игротеке находятся игровые материалы, способствующие речевому, познавательному и математическому развитию детей. Это дидактические, развивающие и логико-математические игры, направленные на развитие логического действия сравнения, логических операций классификации, сериации, узнавание по описанию, воссоздание, преобразование, ориентировку по схеме, модели; на осуществление контрольно-проверочных действий («Так бывает?», «Найди ошибки художника»); на следование и чередование и др.
Традиционно используются разнообразные развивающие игры (на плоскостное и объемное моделирование), в которых дети не только выкладывают картинки, конструкции по образцам, но и самостоятельно придумывают и составляют силуэты.
В старшем дошкольном возрасте дети проявляют интерес к кроссвордам, познавательным заданиям. С этой целью на ковро-лине можно выкладывать с помощью тонких длинных лент-липучек сетки кроссвордов и крепить листки с картинками или текстами заданий.
| Множества, свойства, отношения как объекты познания математической стороны действительности. Общая характеристика свойств и отношений, познаваемых в дошкольном возрасте.
Под множеством понимается совокупность объектов, которые рассматриваются как единое целое (столы, цветы, деревья и т.д.). Под характеристиками множества понимаются такие свойства, которыми владеют все объекты принадлежащие данному множеству и не владеет ни один предмет не принадлежащий к данному множеству. Множество имеет свои элементы, которые выступают в качестве объектов, составляющих это множество.
Некоторым свойством может обладать бесконечное множество предметов, другим — лишь конечное множество. Поэтому множества подразделяются на конечные и бесконечные.
В предматематической подготовке обычно имеют дело с конечными множествами. Элементами множества могут быть самые разнообразные предметы любой природы, как конкретные (растения. Животные и т.д.), так и абстрактные (числа, геометрические фигуры, отношения и т.д.) или изображения таких объектов. В таком случае используется дидактический материал.
Термин подмножество применяется в математике в смысле часть множества. Н-р, рассматривая только красные блоки, мы предлагаем выделить из них те, которые являются красными, то выделенное подмножество совпадает со всем рассматриваемым множеством. Если же предлагается из этих блоков отделить (переложить в другой ящик) все те, которые являются синими, то этот ящик останется пустым, т. е. фактически в множестве красных блоков будет выделено «пустое множество» блоков.
Выделение подмножества с помощью некоторого свойства может быть смоделировано с помощью игры с одним обручем. У каждого ребенка в руке — один блок. Дети по очереди располагают блоки в соответствии с заданием воспитателя, н-р внутри обруча — все красные, а вне обруча — все остальные. После решения задачи предлагаются 2 вопроса: «Какие блоки лежат внутри обруча?» и «Какие блоки лежат вне обруча?» Ответ «внутри лежат не красные блоки» - отрицание свойства тех, которые лежат внутри, т.е. Дополнение множеств (логическая операция «не»)
Игра с двумя обручами. Размещают на плоскости 2 обруча (красный и черный) так, чтобы они пересеклись, и предлагают детям расположить блоки так, чтобы внутри красного обруча оказались все красные блоки, а внутри черного — все круглые.
После выполнения дети отвечают на 4 вопроса. Какие блоки лежат: 1) внутри обоих обручей; 2) внутри красного, но вне черного обруча; 3) внутри черного, но вне красного обруча; 4) вне обоих обручей. Блоки надо называть здесь с помощью двух свойств — формы и цвета.
Пересечением двух множеств А и Вназывается множество, состоящее из всех тех и только тех элементов, которые принадлежат и множеству А, и множеству В, т. е. их общая часть. (логическая операция «и»)
Объединением двух множеств А и В называется множество, состоящее из всех тех и только тех элементов, которые принадлежат множеству А или множеству В. (логическая операция «или»)
Разбиение множества на классы лежит в основе классифицирующей деятельности.
Игра с тремя обручами. Пусть 3 (красный, черный и синий) обруча расположены пересекаясь. Предлагается расположить блоки, так, чтобы внутри красного обруча оказались все красные блоки, внутри черного — все квадратные, а внутри синего — все большие. После ставятся 8 вопросов. Какие блоки лежат: 1) внутри всех трех обручей; 2) внутри красного и черного, но вне синего обруча; 3) внутри черного и синего, но вне красного обруча; 4) внутри красного и синего, но вне черного обруча; 5) внутри красного, но вне черного и вне синего обруча; 6) внутри черного, но вне синего и вне красного обруча; 7) внутри синего, но вне красного и вне черного обруча; 8) вне всех трех обручей?
Отношения между двумя множествами
В математике различаются два вида включения: в широком смысле (нестрогое включение) и в узком смысле (строгое включение). При этом возможны два случая:
все элементы В принадлежат А. В этом случае множества AnВсостоят из одних и тех же элементов и называются равными. Например, если А — множество всех больших блоков, а В — множество всех блоков, которые не являются малыми, то А=В.
не все элементы В принадлежат А. В таком случае говорят также, что А строго включается в В — или А является собственной (или правильной) частью В. В предматематической подготовке дошкольников встречается лишь строгое включение, собственная часть множества.
Выявление правильных отношений между множествами окружающих нас предметов — составная часть формирования и развития представлений дошкольников об окружающем мире.
| Наглядные и вербальные средства выражения и познания отношений.
В младшем дошкольном возрасте ребёнок приходит к пониманию понятий один и много. Восприятие множества происходит при комплексной работе анализаторов зрительного и двигательного. К концу младшего дошкольного возраста дети осваивают такие действия как сравнение множества приёмом наложения и приложения. В старшем дошкольном возрасте восприятие множества осуществляется преимущественно с помощью зрительного анализатора. Ребёнок старшего дошкольного возраста может выполнять операции над множеством на основе 2-х или нескольких принципов (классифицировать).
В старшем дошкольном возрасте множество и его мощность может ребёнок устанавливать при помощи счётных действий. Также может выполняться уравнивание действий (добавить или отнять 1 и т.д.).
В старшем дошкольном возрасте ребёнок пользуется обобщёнными понятиями для обозначения множества и операций над множеством. Это позволяет использовать в старшем дошкольном возрасте схемы, модели и условные обозначения 9блоки Дьёнеша, алгоритмы различных видов и логические схемы). В старшем дошкольном возрасте ребёнок осваивает действия классификации элементов множества и выполняет действия сериации. На 1-ом этапе построения действий классификации дети осваивают действие по 1 свойству; на 2-ом этапе – по 2-м; на 3-ем этапе – по 3-м свойствам.
В практике используются различные наглядные дидактические материалы: рамки-вкладыши, игрушки-вкладыши (матрешки, кубы, бочонки и др.), сериационные наборы М. Монтессори для упорядочивания предметов по разным признакам (цвету, запаху, размеру, различным протяженностям и др.); палочки Кюизенера (цветные числа) и цветные полоски, построенные по такому же принципу, различаются не только длиной, но и цветом. При этом все палочки одинаковой длины имеют одинаковый цвет. Количество палочек в наборе таково, что позволяет строить два разнонаправленных ряда: один — по нарастанию длины, другой — по убыванию; логические блоки Дьенеша — наборы предметов разных цветов и форм.
К вербальным средствам выражения и познания отношений относятся: занимательные задачи; вопросы; загадки; стихи; считалки и т.д.
| 16. Особенности познания свойств и отношений в дошкольном возрасте. Содержание и организация детской деятельности, направленной на освоение свойств и отношений.
В качестве основных структурных компонентов содержания матем-го развития дошк-ков выступают логико-математические представления и способы познания. Первым и важнейшим компонентом содержания матем-кого развития дошк-ков явл-ся свойства и отношения. В процессе разнообразных действий с предметами дети осваивают такие свойства, как форма, размер (протяженность в пространстве), количество, пространственное расположение, длительность и последовательность, масса. Первоначально в рез-те зрительного, осязательно-двигательного, тактильного обследования, сопоставления предметов дети обнаруживают и выделяют в предметах разные их свойства. Дети сравнивают отдельные предметы и группы предметов по разным свойствам, упорядочивают объекты по разным основаниям (н-р, по возрастанию или убыванию их размера, емкости, тяжести и т. д.), разбивают совокупности на группы по признакам и свойствам. В процессе этих действий дошкольники обнаруживают отношения сходства по 1, 2 и более свойствам и отношениям порядка. При этом они учатся оперировать «в уме» не с самим объектом, а с его свойствами. Т.О.формируется важнейшая предпосылка абстрактного мышления — способность к абстрагированию.
В процессе осуществления практических действий дети познают разнообразные геометрические фигуры и постепенно переходят к группировке их по количеству углов, сторон, вершин. У детей развиваются конструктивные способности и пространственное мышление. Они осваивают умение мысленно поворачивать объект, смотреть на него с разных сторон, расчленять, собирать и видоизменять его.
В познании величин дети переходят от непосредственных (наложение, приложение, сравнение «на глаз») к опосредованным способам их сравнения (с помощью предмета-посредника и измерения условной меркой). Это дает возможность упорядочивать предметы по их свойствам (размеру, высоте, длине, толщине, массе и другим). Ребенок убеждается в том, что одни и те же свойства в разных объектах могут иметь как одинаковую, так и разную степень выраженности (равные или разные по толщине и т. д.).
Пространственно-временные представления осваиваются через реально представленные отношения (далеко — близко, сегодня — завтра). Познание этих отношений осуществляется в процессе анализа реальной жизненной обстановки, разрешения проблемных ситуаций, решения специально разработанных творческих задач и моделирования.
Познание чисел и освоение действий с числами — важнейший компонент содержания математического развития. Посредством числа выражаются количество и величины. Оперируя только числами, которые являются показателями количеств и величин объектов окружающей действительности, сравнивая их, увеличивая, уменьшая, можно делать выводы о точном состоянии объектов действительности.
Счет является способом определения численности множеств и способом их опосредованного сравнения. В процессе счета дети постигают число как показатель мощности множества. Сосчитывая разные по размеру, пространственному расположению предметы, дети приходят к пониманию независимости числа от других свойств предметов и совокупности в целом. Знакомятся с цифрами, знаками для обозначения чисел.
Решая арифметические задачи, дети осваивают специальные приемы вычислительной деятельности, н-р присчитывание и отсчитывание по единице.
На основе сложившегося логико-математического опыта ребенку 5—6 лет становятся доступными познание связей, зависимостей объектов, закономерностей, оценка различных состояний и преобразований. Ребенок определяет порядок следования; находит фигуру, пропущенную в ряду фигур; понимает и исправляет ошибки; поясняет неизменность или изменение состояния объектов, веществ; следует алгоритмам и составляет их самостоятельно.
|