|
1. Предмет и задачи методики как научной дисциплины, ее истоки, связь с другими науками
1.Предмет и задачи методики как научной дисциплины, ее истоки, связь с другими науками.
ТиМФЭМП явл-ся отраслью ДП, выступает как самостоятельная наука, имеющая свой научный аппарат, включающая в себя основные понятия и категории, цели и задачи, гипотезы, объект и предмет, методы исследовательской деят-ти.
Как наука ТиМФЭМП ставит перед собой цель: разработка эффективных педагогических средств для развития математических способностей детей д\в, а также подготовка детей к пониманию и восприятию математики как одного из важнейших учебных предметов в школе. Методика призвана способствовать разностороннему развитию личности.
Предметом исследований методики ФЭМП как науки является изучение основных закономерностей процесса ФЭМП у дошкольников в условиях общественного образования.
Объектом методики как науки является математическое развитие детей д\в.
Задачи МФЭМП как науки:
1.Научное обоснование содержания и программных требований к уровню развития количественных, временных, пространственных и других математических представлений у детей на каждом этапе д\в.
2.Совершенствование материала необходимого для ФЭМП в программах и стандартах.
3.Разработка и внедрение в практику эффективных дидактических средств и методов и форм организации процесса математического развития дошкольников.
4.Реализация преемственности в ФЭМП у детей в УДО и соответствующих понятий в школе.
5.Разработка содержания подготовки высококвалифицированных кадров способных осуществить педагогическую и методическую работу по формированию и развитию математических представлений у детей в условиях общественного дошкольного образования.
Общей задачей методики как науки является исследование и разработка дидактических основ процесса ФЭМП у детей д\в.
Истоки науки : народное творчество, исторический опыт, исследования дошкольной педагогики, зарубежный опыт, результаты НИР в области ФЭМП, Инновационный опыт практиков, научные основы ФЭМП.
Научными основами МФЭМП являются принципиальные и исходные положения философии, психологии, педагогики, математики.
Из области философии фундаментальными закономерностями являются: система, понятие о системе и ценности.
Из области психологии – понятие о познавательных процессах, понятие о деятельности, понятие о личности, индивидуальность, понятие о человеке, как о субъекте деятельности и поведения.
Из области педагогики – теория обучения и воспитания, дидактика, понятие об одарённости.
Из области математики – арифметика, элементарные геометрические понятия, математические действия и др.
| 2.Научные основы математического развития дошкольников. Общая характеристика дидактической системы формирования и развития элементарных математических представлений у дошкольников.
Предмат-кое и предлогич-кое разв-ие понимается как теор-кие и практич-кие знания о мат-ке и логике у дошк-в и уч-ков нач. шк-ы на предмат-ком уровне изуч-ся некоторые матем-кие понятия, к-рые позволяют освоить реб-ку соответствующие матем-кие и логич-кие знания, выводящие их на новую стадию матем-го разв-ия.
Элем-ые матем-кие предст-ния – это определённый круг спец-ных зн-ий который позволяет реб-у осваивать матем-кие понятия.
Теоретико-методическая концепция, разработанная А. М. Леушиной в 50-е г 20в заключается в следующем: от нерасчлененного восприятия множества предметов детей необходимо переводить к выявлению отдельных составляющих этого множества элементов путем попарного сопоставления их, что представляет дочисловой период обуч-ния (усвоение отношений столько же, поровну, больше, меньше и др.).
Согласно методике, предложенной А. М.Леушиной, в процессе разв-тия колич-нных предст-ний у детей следует особое вним-ие уделять накоплению ими чувственного опыта, созданию сенсорной основы счетной деят-ти, последовательному обобщению детских предст-ний. Этим требованиям отвечает предложенная ею система практич-ких упр-ний с демонстр-ным и раздат-ным материалом. Соврем-ное состояние теории и технологии разв-ия матем-ких предст-ний у детей дошк. возр. сложилось в 80—90-е гг. XX вв. и первые годы нового столетия под влиянием развития идей обучения детей мат-ке, а также реорганизации всей системы образ-ния.
В нач 90-х гг. XX в. наметилось несколько осн-ных научных напр-ний в теории и методике разв-ия мат-ких предст-ний у д-й дошк возр.
1. Содержание обуч-ия и разв-тия, методы и приемы конструировались на основе идеи преимущественного развития у д-й дошк возр интеллектуально-творческих способностей (Ж. Пиаже, Д. Б. Эльконин, В. В. Давыдов, Н. Н. Поддьяков, А. А. Столяр и др.):
- наблюдательность, познавательные интересы; умения устанавливать связи, выявлять зависимости, делать выводы; сравнивать, классифицировать, обобщать и т.д. Предполагались активные методы и приемы обучения и развития детей, такие как моделирование, действия трансформации (перемещение, удаление и возвращение, комбинирование), игра и другие.
2. положение базировалось на преимущественном развитии у детей сенсорных процессов и способностей (А. В. Запорожец, Л. А. Венгер, Н. Б. Венгер и др.):
- включение реб-ка в активный процесс по выделению свойств объектов путем обследования, сравнения; самост-ное и осознанное использование сенсорных эталонов и эталонов мер в деят-ти использование моделирования.
3. положение основано на идеях первоначального (до освоения чисел) овладения детьми способами практич-ого сравнения величин через выделение в предметах общих признаков — массы, длины, ширины, высоты (П. Я. Гальперин, Л.С.Георгиев, В.В.Давыдов, Г. А. Корнеева, А. М. Леушина и др.). Эта деят-ть обеспечивает освоение отношений равенства и неравенства путем сопоставления.
4. положение основывается на идее становления и разв-тия определенного стиля мышления в процессе освоения детьми свойств и отношений (А. А. Столяр, Р. Ф. Соболевский, Т. М. Чеботаревская, Е. А. Носова и др.). В процессе действий с множествами предметов, обладающих разнообразными св-вами (цветом, формой, размером, толщиной и пр.), дети упражняются в абстрагировании св-в и выполнении логических операций над св-ми тех или иных подмножеств. Спец-но сконструированные игры помогают детям понять точный смысл логич-ких связок и, или, если.., то, смысл слов не, все, некоторые. Теоретич-кие основы совр-ной методики разв-ия матем-ких предст-ний базируются на интеграции 4х осн-ных положений, а также на классических и совр-ных идеях матем-кого разв-ия д-й дошк возр.
| 3.Эмпирический этап развития методики. Выдвижение и обоснование первых идей математического развития маленьких детей.
1 этап развития методики – эмпирический. Корнями он уходит в народную педагогику. Различные считалки, поговорки, пословицы, загадки приобщали детей к счёту, формировали понятие числа. Мысль об обучении детей счёту в процессе упражнений была высказана первопечатником Иваном Фёдоровым в «Букваре».
На протяжении 17-19в. вопросы содержания и методов обучения детей д.в. арифметике и развитие представлений о размерах, мерах измерения, пространстве и времени нашли отражение в передовых педагогических системах воспитания.
Я.А.Коменский в книге «Материнская школа» включил усвоение счёта в пределах первых двух десятков, различение чисел, определение большего и меньшего из них, сравнение предметов, геометрических фигур, изучение мер измерения (дюйм, пядь, шаг, фунт).
И.Г.Песталоцци критиковал подходы того времени, выступил против зубрёжки. Он предложил свою систему, основанную на принципах перехода от элементарных понятий к более сложным, использование наглядности. «Как Гертруда учит своих детей».
К.Д.Ушинский – предлагал обучать детей счёту как отдельных предметов, так и групп, обучать сложению десятками, формировать представления о десятке, как единице счёта.
Л.Н.Толстой предлагал обучать обратному счёту, изучать нумерацию, строить обучение на основе игры.
Школа М.Монтессори – опирается на идеи саморазвития и самообучения. Разработала много пособий, материалов для сенсорного развития (для развития представлений о числе, форме, величинах, изучение письменной и устной нумерации).
Ф.Фребель – разработал дидактический материал сенсорного и математического развития. «Дары Фребеля» 6 даров: кубы, шары, пластины и т.д. для развития строительных навыков в единстве с познанием чисел, форм, размеров, пространственных отношений.
| 4.Естественное математическое развитие ребенка в детском саду и семье по методу Е.И. Тихеевой.
Е.И.Тихеева предлагала организовать математическое развитие на основе естественного пути развития самостоятельной деятельности ребёнка. Освоение математических знаний в виде игр-занятий с дидактическим материалом. Содержанием было освоение понятий о количестве и счёте; о геометрических фигурах; измерении величин; освоение представлений о пространстве и времени. Она использовала результат работ зарубежных педагогов: Песталоцци, Фребеля, Монтессори, а также практические наработки воспитателей отечественных детских садов. Е. И. Тихеева возражает против коллективных занятий, ибо в них «навязывается» всем то, к чему не лежит душа некоторых детей. По ее мнению, грамоту и счет дети усваивают легко и незаметно без систематического обучения, взаимно обучая друг друга.
В этих целях Е. И. Тихеева создает ряд пособий типа парных картинок, лото и др. Она разрабатывает 60 задач для игр-занятий на закрепление количественных и пространственных представлений, объясняя необходимость их тем, что математика, как точная наука, требует систематизации усвоенных числовых представлений. В качестве счетного материала она советует брать естественный материал — камешки, бобы, листья, шишки, а также мелкие игрушки, пуговицы, ленточки и др.
Все пособия разрабатывались ею с установкой на коллективные игры-занятия (всевозможные виды лото, домино, парные картинки и др.), Е. И. Тихеева требовала от воспитателей невмешательства в развитие детей и в то же время указывала на необходимость использования ее методики в работе с каждым ребенком.
Она осознавала необходимость и значение обучения, последовательного усложнения учебного материала, однако в обосновании своих рекомендаций она не преодолела еще влияния идеалистических теорий.
Несмотря на ошибочность некоторых взглядов, ряд общепедагогических высказываний Е. И. Тихеевой и ее пособия по счету не утратили своей ценности и до сих пор. Они вошли в общий фонд советской дошкольной педагогики.
|
5. Общая характеристика содержания и методов обучения сравнению величин, разработанная Л.В. Глаголевой.
До 1939г. в д/с Ленинграда детей обучали счёту по методике Л.В.Глаголевой. Её труды: Математика в нулевых группах», Преподавание арифметики лабораторным методом», «Сравнение величин предметов в нулевых группах» в них раскрыто содержание, методы и приёмы формирования у детей первоначальных представлений о числах, величинах, их сравнение. Глаголева разработала методы обучения счёту путём прямого счёта и путём использования образа. Во всех пособиях прослеживается мысль о необходимости идти при обучении от числа к числу. Глаголева пропагандировала разнообразие методов обучения:
- лабораторный (с наглядным материалом);
- исследовательский (поиск детьми ситуации применения знаний, аналогичных изучаемым);
- иллюстративный (закрепление знаний, умений в продуктивной деятельности);
- наглядный (демонстрация наглядных пособий);
- игра.
Глаголева сторонница специально-организованного обучения.
Л. В. Глаголева особое внимание уделяла разработке методики обучения детей сравнению величин путем сопоставления и с помощью меры и числа. Навыки в наблюдении над предметами считала основой сравнения. Предполагала, что сначала нужно учить детей видеть, рассматривать и сравнивать предметы в помещении, затем — на улице, в природе, а потом — на картинках. Рекомендовала упражнять детей в описании предмета, находящегося перед глазами, а затем — по памяти. Высказывалась против первичного использования картинок в сравнении величин, советовала первоначально пользоваться предметами.
Л. В. Глаголева разработала план построения занятий с детьми по сравнению величин, выделив в нем 4 момента: образ, опыт, проверка и фиксация. Образ формировался в ходе четкого и отчетливого восприятия величин. В процессе накопления опыта дети изучали данную величину путем лабораторно-иссле-довательского метода. Сравнивали предметы между собой разнообразно: при помощи зрения и осязания вместе, затем — порознь (зрением без осязания и наоборот). Проверка полученных детьми восприятий состояла в нахождении в окружающей обстановке и назывании нескольких предметов, где бы исследуемая величина имела место. Фиксация величины осуществлялась в какой-либо результативной детской деятельности (рисование, аппликация) и являлась контролем за освоением детьми соответствующих способов познания.
| 6. Общая характеристика содержания и методов математического развития детей по методике Ф.Н. Блехер.
Основные мысли о содержании и методах обучения изложены ею в книге «Математика в детском саду и нулевой группе».
Согласно идеям Блехер детей знакомят с понятием чисел, один, много, цифры, количественный состав числа, пространственные и временные отношения, геометрические фигуры, приемы сравнения предметов.
Обучение детей идёт 2-мя путями: 1- попутно (вспомогательный путь) развивать у детей количественные представления в других видах деятельности; 2 - в играх на занятиях, в действиях с материалом (основной путь).
Ф. Н. Блехер разработала не только содержание обучения детей, но и методы, преимущественно игровые. Созданная ею система дидактических игр по сей день используется в дошкольных учреждениях с целью развития математических представлений и умственных способностей детей. Как считала Ф. Н. Блехер, дидактические игры, хотя и являются одним из важных приемов обучения, все же не могут заменить другие его формы и методы.
На основе анализа теоретических и методических публикаций Ф. Н. Блехер можно заключить, что ею создана первая в нашей стране дидактическая система обучения математике в условиях дошкольных учреждений.
| Совершенствование содержания и методов математического развития детей под влиянием психолого-педагогических исследований 1950-1960-х гг.
Вопросы разв-я колич-ных предст-ний у д-й дошк-го возраста разрабатывались А. М. Леушиной с 50-х гг. XX в. Благодаря ее работам были раскрыты законом-ти разв-ия колич-ных предст-ий у д-й в усл-ях целенапр-ного обуч-ия на зан-ях в д/с.
Методическая концепция того времени основывалась на работах Е. И. Тихеевой, Л. В. Глаголевой, Ф. Н. Блехер. Суть ее заключалась в следующем: усвоение реб-ом матем-ских предст-ний осущ-тся в процессе жизни и разнообразной деят-ти. Играя, работая, дети сами черпают необх-ые им для разв-ия знания из окр мира. Педагог должен лишь создавать условия.
При таком подходе основное внимание уделялось разработке дидактического материала, играм и упражнениям как основному методу и средству работы с детьми.
А. М. Леушина разработала основы дидактической системы фэмп, создав программу, содержание, методы и приемы работы с детьми от 3 до 6 лет.
Концепция, разработанная А. М. Леушиной, заключается в следующем: от нерасчлененного восприятия множества предметов детей необходимо переводить к выявлению отдельных составляющих этого множества элементов путем попарного сопоставления их, что представляет дочисловой период обучения (усвоение отношений столько же, поровну, больше, меньше и др.). Обучение счету основывается на освоении детьми действий с множествами и базируется на сравнении двух множеств. Элементарное представление о числе формируется у детей в ходе накопления ими опыта сравнения нескольких предметных групп по признаку количества, независимо от других признаков (качественных особенностей, расположения в пространстве). На этой основе строится освоение количественного и порядкового счета, определение состава чисел из единиц и двух меньших чисел.
Согласно методике, предложенной А. М.Леушиной, в процессе развития количественных представлений у детей следует особое внимание уделять накоплению ими чувственного опыта, созданию сенсорной основы счетной деятельности, последовательному обобщению детских представлений. Этим требованиям отвечает предложенная ею система практических упражнений с демонстрационным и раздаточным материалом.
Занятия рассматривались А. М. Леушиной в качестве основной, ведущей формы развития количественных представлений в детском саду.
Воспитатели детских садов широко использовали разработанные А. М. Леушиной конспекты занятий.
В дальнейшем под руководством А. М. Леушиной были разработаны содержание и методы формирования у детей пространственных и временных представлений, обучения измерению объема, массы; вопросы умственного и всестороннего развития детей в процессе освоения ими элементарных математических знаний .
| Характеристика научно-обоснованной дидактической системы формирования элементарных математических представлений, разработанной А.М. Леушиной.
А. М. Леушина разработала основы дидактической системы формирования элементарных математических представлений, создав программу, содержание, методы и приемы работы с детьми от 3 до 6 лет.
Теоретико-методическая концепция, разработанная А. М. Леушиной, заключается в следующем: от нерасчлененного восприятия множества предметов детей необходимо переводить к выявлению отдельных составляющих этого множества элементов путем попарного сопоставления их, что представляет дочисловой период обучения (усвоение отношений столько же, поровну, больше, меньше и др.). Обучение счету основывается на освоении детьми действий с множествами и базируется на сравнении двух множеств. В дальнейшем сравнении чисел ребенком усваиваются последовательность и отношения между ними, что приводит к сознательному освоению счета и использованию его в вычислениях, выполнению действий при решении простых арифметических задач. Элементарное представление о числе формируется у детей в ходе накопления ими опыта сравнения нескольких предметных групп по признаку количества, независимо от других признаков. На этой основе строится освоение количественного и порядкового счета, определение состава чисел из единиц и двух меньших чисел.
Согласно методике, предложенной А. М.Леуши-ной, в процессе развития количественных представлений у детей следует особое внимание уделять накоплению ими чувственного опыта, созданию сенсорной основы счетной деятельности, последовательному обобщению детских представлений. Этим требованиям отвечает предложенная ею система практических упражнений с демонстрационным и раздаточным материалом.
Занятия рассматривались А. М. Леушиной в качестве основной, ведущей формы развития количественных представлений в детском саду. С их помощью возможно освоение детьми знаний повышенной трудности, достаточно обобщенных, лежащих в «зоне ближайшего развития». Полноценное математическое развитие обеспечивает лишь организованная, целенаправленная деятельность на занятии, в ходе которой взрослый продуманно ставит перед детьми познавательные задачи, показывает адекватные пути и способы их решения.
В дальнейшем под руководством А. М. Леушиной были разработаны содержание и методы формирования у детей пространственных и временных представлений, обучения измерению объема, массы; вопросы умственного и всестороннего развития детей в процессе освоения ими элементарных математических знаний
| |
|
|