Лекции Электропривод ГМиММ. 1. Роль электропривода в современных машинных технологиях
Скачать 3.83 Mb.
|
1. Роль электропривода в современных машинных технологиях Современное промышленное и сельскохозяйственное производство, транспорт, коммунальное хозяйство, сферы жизнеобеспечения и быта связаны с использованием разнообразных технологических процессов, большинство из которых основано на применении рабочих машин и механизмов. Разнообразие и число рабочих машин огромно. Там, где применяются технологические машины - используется электропривод. Практически все процессы, связанные с движением с использованием механической энергии, осуществляются электроприводом.. Электроприводы различны по своим техническим характеристикам: по мощности, скорости вращения, конструктивному исполнению и другим. Мощность электроприводов прокатных станов, компрессоров газоперекачивающих станций и ряда других уникальных машин доходит до нескольких тысяч киловатт. Мощность электроприводов, используемых в различных приборах и устройствах автоматики, составляет несколько ватт. Электропривод бытовых приборов и машин обычно составляет от 10 до 1000 Вт, электропривод станков - от 0,25 кВт до 100 кВт и т.д. Диапазон мощности электроприводов очень широк. Также велик диапазон электроприводов по скорости вращения. Так, скорость вращения центрифуг доходит до 100000 об/мин. Есть механизмы, у которых скорость вращения рабочего органа составляет менее одного оборота в минуту. Большинство производственных рабочих машин и механизмов приводится в движение электрическими двигателями. Двигатель вместе с механическими устройствами (редукторы, трансмиссии, кривошипно-шатунные механизмы и др.), служащими для передачи движения рабочему органу машины, а также с устройствами управления и контроля образует электромеханическую систему, которая является энергетической, кинематической и кибернетической (в смысле управления) основой функционирования рабочих машин. В более сложных технологических машинных комплексах (прокатные станы, экскаваторы, обрабатывающие центры и другие), где имеется несколько рабочих органов или технологически сопряженных рабочих машин, используется несколько электромеханических систем (электроприводов), которые в сочетании с электрическими системами распределения электроэнергии и общей системой управления образуют электромеханический комплекс. Большие скорости обработки, высокая и стабильная точность выполнения технологических операций потребовали создания высокодинамичных электроприводов с автоматическим управлением. Стремление снизить материальные и энергетические затраты на выполнение технологических процессов обусловило необходимость технологической и энергетической оптимизации процессов; эта задача также легла на электропривод. На этапе технического развития машинного производства, достигнутого к концу XX века, электромеханические комплексы и системы стали определять технологические возможности и технический уровень рабочих машин, механизмов и технологических установок. Создание современных электроприводов базируется на использовании новейших достижений силовой электротехники, механики, автоматики, микроэлектроники и компьютерной техники. Это быстро развивающиеся области науки, что определяет высокую динамичность развития электромеханических систем. Вторым обстоятельством, обусловившим развитие электропривода, явилось распространение его применения не только на промышленное производство, но и на другие сферы, определяющие жизнедеятельность человека: сельское хозяйство, транспорт, медицину, электробытовые установки и др. Третья причина связана с наметившимся переходом от экстенсивного развития производства электрической энергии к более эффективному ее использованию. Повышение эффективности электромеханического использования электроэнергии всецело связано с развитием электропривода. Речь идет не только об уменьшении потерь энергии при ее электромеханическом преобразовании, но, главным образом, о том, что использование автоматизированного регулируемого электропривода позволяет оптимизировать сами технологическое процессы с целью сокращения их энергоемкости. 1.2. Структура электропривода Электропривод — это техническая система, предназначенная для приведения в движение рабочих органов машины и целенаправленного управления рабочими процессами, состоящая из электродвигательного, передаточного, преобразовательного и информационно-управляющего устройств [1]. Электродвигательное устройство — это электрический двигатель, преобразующий электрическую энергию в механическую — электромеханический преобразователь энергии. Двигатели могут быть различными по виду создаваемого ими движения: вращательного, линейного, шагового, вибрационные и др. Большинство используемых электродвигателей — это машины вращательного движения. Для передачи движения от электродвигателя к рабочему органу машины служит механическое передаточное устройство: редуктор, трансмиссия, ременная передача, канатная передача, кривошипно—шатунный механизм, передача винт-гайка и др. (см. рис. 1 .1). Передаточный механизм характеризуется коэффициентом передачи, представляющим собой отношение скорости на входе к скорости на выходе механизма. В некоторых рабочих машинах (например, насосы, вентиляторы, центрифуги) механическое передаточное устройство, как правило, отсутствует. Преобразовательное устройство — это преобразователь электрической энергии. Эти устройства применяются в регулируемом электроприводе для целенаправленного и экономичного изменения параметров движения электропривода: скорости, развиваемого момента и др. К электрическим преобразовательным устройствам относятся управляемые выпрямители, преобразователи частоты и другие. В нерегулируемых электроприводах преобразовательное устройство, как правило, отсутствует. Рис. 1 .1. Механические передаточные устройства: а — редуктор; б — зубчато-реечная передача; в - барабанно-канатная передача; г — кривошипно-шатунный механизм; д — ременная передача; е — винтовая передача; ж — шарико-винтовая передача Электрическое преобразовательное устройство обычно представляет собой преобразователь, выполненный на силовых полупроводниковых приборах: неуправляемых (диоды) и управляемых (тиристоры, запираемые тиристорьт, биполярные транзисторы с изолированньтм входом — ЮВТ, и другие). Электродвигательное, передаточное и преобразовательное устройства образуют силовой канал электропривода (см. рис. 1 2), содержащий электрическую часть (сеть, преобразователь электрической энергии, электродвигатель) и механическую часть (подвижный элемент, например, ротор и вал электродвигателя, механическая передача, рабочий орган машины). Рис.1.2. Структура силового канала электропривода При работе электропривода в двигательном режиме электрическая энергия, поступающая из сети, преобразуется электродвигателем в механическую энергию, которая передается рабочему органу машины и расходуется на выполнение технологического процесса (резание в металлорежущих станках, подача воды насосами, подъем груза краном и т.п.). Во всех звеньях силового канала часть энергии теряется. Следует стремиться сокращать потери энергии при ее преобразовании и передаче. Энергетическую эффективность электропривода обычно оценивают посредством кпд, который при однонаправленном потоке энергии определяют как отношение полезной мощности на рабочем органе к потребляемой мощности (1.1.) Кпд электропривода равен произведению кпд электрического, электромеханического преобразователей и механической передачи. Для того чтобы оценить кпд рабочей машины в целом, кпд электропривода нужно умножить на кпд самой рабочей машины ηрм(например, насоса) (1.2.) Здесь Ртехн – технологически необходимая мощность для выполнения данного производственного процесса. Электроприводы могут работать не только в двигательном, но и в тормозном режиме (например, спуск груза, принудительное торможение машины при останове и т.п.). В этом случае энергия торможения — потенциальная энергия спускаемого груза или кинетическая энергия движущихся масс, - поступает в электромеханический преобразователь, который работает в режиме генератора. Эта энергия за вычетом потерь и совершаемой рабочим органом в процессе торможения работы отдается в питающую сеть, если система допускает рекуперацию энергии. Если не допускает — избыток энергии рассеивается в балластном сопротивлении R. Направление потока энергии в режиме торможения показано на рис. 1.2 пунктиром. Важнейшей функцией электропривода является управление преобразованной механической энергией, т.е. управление технологическим процессом. Его реализует входящее в состав электропривода информационно-управляющее устройство. Общая структура электропривода показана на рис. 1 .3. Здесь пунктирной линией обведены элементы системы, входящие в состав электропривода и образующие силовой и информационный каналы электропривода. Рис. 1 . 3 . Структура автоматизированной электромеханической системы Информационно-управляющее устройство состоит из аппаратов управления и защиты, осуществляющих включение, пуск, останов электропривода и защиту от аварийных и аномальных режимов работы, а также из электронных и микропроцессорных устройств управления и датчиков технологических, механических и электрических параметров, характеризующих работу электропривода. Совокупность информационных и управляющих устройств образует информационный канал электропривода, предназначенный для управления параметрами (координатами) электропровода в соответствии с требованиями технологического процесса. Важной функцией системы управления является также осуществление технологического процесса с минимальными затратами электрической энергии. В последние годы информационный канал электропривода все в большей степени реализуется с использованием устройств управляющей вычислительной техники: промышленных компьютеров, программируемых контроллеров, микропроцессорных средств и систем. Это позволяет, в частности, управлять отдельными электроприводами от управляющих устройств более высокого уровня (АСУТП), объединяющих управление всеми производственными машинами, обслуживающими данный технологический процесс. 1.3. Классификация электроприводов Электроприводы, используемые в различных технологических установках, разнообразны по своим функциональным возможностям, схемному и конструктивному исполнению, степени автоматизации, что связано с большим разнообразием рабочих машин. Классификация электроприводов по отдельным признакам дана в таблице 1.1. Электроприводы бывают индивидуальными и групповыми. Если каждый рабочий орган машины приводится в действие своим электроприводом, то он называется индивидуальным. Такой привод может быть однодвигательным, либо многодвигательным. При групповом электроприводе один двигатель приводит в движение несколько рабочих органов. При этом усложняется кинематическая цепь рабочей машины и затрудняется управление рабочими органами, т.к. для раздельного управления рабочими органами необходимо применять специальные механические устройства: управляемые муфты, коробки передач, фрикционы и др. По мере развития техники групповой электропривод все больше вытесняется индивидуальным. Классификация по виду движения электродвигателя. Наибольшее, а до недавнего времени исключительное применение получили электроприводы вращательного движения. В последнее время значительное внимание уделяется линейным двигателям. В тех механизмах, где рабочий орган совершает поступательное или возвратно-поступательное движение применение линейных двигателей конструктивно гораздо удобнее, чем использование специальных кинематических пар: винт-гайка, шарико-винтовые передачи, кривошипно-шатунньтй механизм и др. Из-за низких энергетических и массогабаритных показателей линейные электродвигатели не находили применения. Создание новых эффективных конструкций линейных двигателей с питанием их от полупроводниковых преобразователей частоты открывает новые возможности использования линейных электроприводов для ряда производственных машин, в первую очередь, для металлорежущих станков. Таблица 1.1 Классификация автоматизированных электроприводов
Многокоординатные электроприводы на основе специальных шаговых электродвигателей являются отечественной разработкой и находят применение в высокоточных робототехнических установках, сборочных автоматах и для других целей. Многокоординатные электроприводы позволяют осуществлять пространственные движения рабочего органа по нескольким координатам. Для высокоточных механизмов и для машин, работающих в динамичных режимах, стремятся исключать механические передачи между валом двигателя и рабочим органом. Такие электроприводы называют безредукторными. При этом, однако, возрастают габариты и масса приводного двигателя, поскольку эти параметры при одной и той же мощности двигателя примерно обратно пропорциональны номинальной скорости двигателя. В последние годы стремятся, особенно для высокоточных электроприводов, конструктивно объединить рабочий орган с приводным электродвигателем. Примерами таких конструктивно-интегрированных электроприводов являются: электрошпиндели (для шлифовальных станков), мотор-колеса (для транспортных средств) и др. Новым направлением в технике является создание электромеханических модулей, включающих в себя рабочий орган, электромеханическое устройство (двигатель) с системой его регулирования и микропроцессорное управляющее устройство. Такие модули, получившие название мехатронных, применяются в роботах и станках с числовым программным управлением. В зависимости от диапазона регулирования скорости, регулируемые электроприводы разделяются на:
Классификация электроприводов по виду управления включает в себя электроприводы с системами управления, различающимися по их функциональным возможностям и сложности. Наиболее простые системы с ручным управлением характерны для нерегулируемых электроприводов. Такие электроприводы имеют систему управления на основе релейно-контакторной аппаратуры, выполняющей функции пуска, останова, защиты и блокировки. Электроприводы с полуавтоматическим управлением подразумевают управление электроприводом оператором с помощью командно-контроллера, кнопок управления и других аппаратов. Система управления содержит элементы автоматического управления и регулирования, обеспечивающие автоматическое изменение параметров электропривода (например, переключение ступеней сопротивления пускового реостата в функции тока или времени) в соответствии с командами оператора. Такие системы характерны, например, для электропривода грузоподъемных кранов. Для регулируемого электропривода, как правило, используются замкнутые САР по току и скорости. В этом случае управление может осуществляться оператором, как это производится, например, машинистами экскаваторов, прокатных станов и других машин. Задание на скорость может также определяться системой технологической автоматики (например, бумагоделательные машины, дозаторы и другие машины). Следующей разновидностью являются позиционные электроприводы, которые обеспечивают точную остановку рабочего органа механизма в заданном положении. Системы управления такими электроприводами содержат замкнутый контур положения, действующий постоянно или при входе рабочего органа в зону точной остановки. Если задающее воздействие на параметры движения рабочего органа задается программными средствами, то такие электроприводы составляют класс электроприводов с числовым программным управлением (ЧПУ). Приводы с ЧПУ содержат замкнутые контуры регулирования по скорости и положению. Если положение рабочего органа должно изменяться в соответствии с заданием, характер которого заранее неизвестен, то функцией электропривода в этом случае является слежение и отработка этого задания с необходимой точностью. Такой электропривод называется следящим. Вопросы по лекции 1:
|