Главная страница
Навигация по странице:

  • 47. Понятие о сенсорных системах. Функциональная характеристика периферического, проводникового и коркового отделов сенсорных систем.

  • 48. Классификация и функции рецепторов. Рецепторный и генераторный потенциал, их свойства.

  • 49. Рефлекторные механизмы контроля фокусирования изображения на сетчатку и её освещенности.

  • 50. Зрачковые рефлексы, их значение.

  • 51. Молекулярные механизмы зрения. Фотохимические и биоэлектрические процессы в рецепторах сетчатки при действии света

  • 52. Функциональная характеристика палочковых и колбочковых фоторецепторов. Световая и темновая адаптация.

  • 53. Функции биполярных и ганглиозных клеток сетчатки. Формирование рецептивных полей с on-центрами и off-центрами, функции горизонтальных и амакриновых клеток.

  • 54. Физиологические механизмы восприятия цвета. Основные формы нарушения цветового восприятия.

  • 55. Проводниковый отдел зрительной сенсорной системы. Принцип ретинотипической организации зрительной сенсорной системы

  • 56. Первичная и вторичная зрительная кора. Простые и сложные клетки зрительной коры. Ассоциативная зрительная кора.

  • 57. Звукопроводящий аппарат наружного и среднего уха. Физиологические механизмы регуляции передачи звука через среднее ухо

  • 58. Звуковоспринимающий аппарат уха. Механизм активации рецепторов Кортиева органа. Электрические потенциалы внутреннего уха.

  • 59. Механизмы восприятия звуков разной частоты и силы. Бинауральный слух

  • 60. Тактильная чувствительность. Виды механорецепторов кожи. Пространственный порог тактильной чувствительности. Механизмы адаптации тактильной чувствительности.

  • ответы на физиологию. 1. Современные представления о строении и функции мембран


    Скачать 0.69 Mb.
    Название1. Современные представления о строении и функции мембран
    Анкорответы на физиологию
    Дата03.02.2023
    Размер0.69 Mb.
    Формат файлаdocx
    Имя файлаOtvety_na_ekzamenatsionnye_voprosy.docx
    ТипДокументы
    #919168
    страница9 из 35
    1   ...   5   6   7   8   9   10   11   12   ...   35

    46. Участие базальных ганглиев в регуляции движений: прямой и непрямой пути. Роль дофамина и ацетилхолина в регуляции активности прямого и непрямого пути.

    Полосатое тело (хвостатое ядро и скорлупа) функционируют как входные ворота в базальные ганглии: они получают возбуждающие (глутаматергические) сигналы от коры. Скорлупа получает входы от сенсорных и моторных областей, окружающих центральную борозду, поэтому её активность прямо связана с двигательной системой. Хвостатое ядро иннервируется фронтальной корой, и поэтому оно вовлечено в когнитивные процессы высокого порядка. Параллельное поступление той и другой информации обеспечивает роль базальных ганглиев в сознательной деятельности, эмоциях, а также в выполнении двигательных команд.

    Прямой путь. ГАМК-ергические (главные) нейроны полосатого тела направляют свои аксоны во внутренний сегмент бледного шара, снижая её активность. Нейроны бледного шара относятся к числу тормозных, они освобождают ГАМК в синапсах на нейронах таламуса. Нейроны бледного шара тонически активны, что приводит к постоянному торможению прохождения сигнала от таламуса к коре. При поступлении возбуждающего сигнала от коры к полосатому телу увеличивается активность его главных тормозных нейронов, что, в свою очередь, приводит к снижению активности тормозных нейронов внутреннего сегмента бледного шара и растормаживанию ядер таламуса. В результате облегчается прохождение сигнала по таламокортикальному пути (облегчается таламическая активация коры).

    Непрямой путь. ГАМК-ергические (главные) нейроны полосатого тела направляют свои аксоны к тормозным нейронам наружного сегмента бледного шара. В результате ограничения активности последних растормаживаются затормаживаемые ими нейроны субталамического ядра, и усиливается активация тормозных нейронов внутреннего сегмента бледного шара. Таким образом, в результате активации непрямого пути усиливается тормозное влияние внутреннего сегмента бледного шара на таламические ядра, и ограничивается прохождение сигнала по таламокортикальному пути (ограничивается таламическая активация коры).

    Дофаминергические нейроны компактной дорсальной части ретикулярной формации образуют диффузную нигростриатную проекцию на нейроны полосатого тела. Эта проекция топографически не организована и предназначена для модуляции кортикостриатных глутаматергических переключений. При дегенерации дофаминергических нейронов черной субстанции нарушается необходимый баланс активности нейронов полосатого тела, что приводит к характерным двигательным нарушениям.

    Дисфункция, вызванная потерей дофаминергических нейронов, проявляется в виде болезни Паркинсона и характеризуется мышечной ригидностью (значительным повышением тонуса мышц), резким ограничением сопутствующих движений, или акинезией, а также появлением крупноразмашистого тремора — дрожания конечностей во время покоя. Указанные нарушения двигательной функции (гипокинез) возникают в связи с уменьшением влияния дофаминергических нейронов и изменением баланса активности в пользу остальных нейронов полосатого тела.

    Если же этот баланс нарушается вследствие поражения холинергических или ГАМКергических нейронов полосатого тела, то возникает другая разновидность двигательных расстройств, проявляющихся появлением непроизвольных и нежелательных для человека насильственных движений — гиперкинезов (н-р, хорея).

    47. Понятие о сенсорных системах. Функциональная характеристика периферического, проводникового и коркового отделов сенсорных систем.

    Сенсорная система – специализированная часть нервной системы, обеспечивающая анализ информации о внешней и внутренней среде организма и формирующая специфические ощущения и их восприятие.

    Периферический (рецепторный) отдел анализаторов представлен рецепторами. Его назначение — восприятие и первичный анализ изменений внешней и внутренней сред организма. В рецепторах происходит трансформация энергии раздражителя в нервный импульс, а также усиление сигнала за счет внутренней энергии метаболических процессов. Свойства: специфичность (способность воспринимать адекватный раздражитель), высокая чувствительность (способность реагировать на очень малые по интенсивности параметры адекватного раздражителя), способность к ритмической генерации импульсов возбуждения в ответ на однократное действие раздражителя, способность к адаптации (десенсибилизация – снижение возбудимости, сенсибилизация – повышение), функциональная мобильность, низкая способность к аккомодации, способность к элементарному первичному анализу, кодирование информации (в нервные импульсы)

    Проводниковый отдел сенсорной системы включает афферентные (периферические) и промежуточные нейроны стволовых и подкорковых структур ЦНС. Проводниковый отдел обеспечивает проведение возбуждения от рецепторов в кору большого мозга и частичную переработку информации. Проведение возбуждения по проводниковому отделу осуществляется двумя афферентными путями: специфическим проекционным путем (прямые афферентные пути) от рецептора по строго обозначенным специфическим путям с переключением на различных уровнях ЦНС (на уровне спинного и продолговатого мозга, в зрительных буграх и в соответствующей проекционной зоне коры большого мозга); неспецифическим путем (с участием ретикулярной формации). На уровне ствола мозга от специфического пути отходят коллатерали к клеткам ретикулярной формации, к которым могут конвергировать различные афферентные возбуждения, обеспечивая взаимодействие анализаторов. При этом афферентные возбуждения теряют свои специфические свойства (сенсорную модальность) и изменяют возбудимость корковых нейронов. Возбуждение проводится медленно через большое число синапсов. За счет коллатералей в процесс возбуждения включаются гипоталамус и другие отделы лимбической системы мозга, а также двигательные центры. Все это обеспечивает вегетативный, двигательный и эмоциональный компоненты сенсорных реакций. Основными функциями проводникового отдела являются: анализ и передача информации, осуществление рефлексов и межанализаторного взаимодействия.

    Центральный, или корковый, отдел сенсорной системы состоит из двух частей: центральной, т.е. «ядра», представленной специфическими нейронами, перерабатывающими афферентную импульсацию от рецепторов, и периферической части, т.е. «рассеянных элементов» — нейронов, рассредоточенных по коре большого мозга. Корковые концы анализаторов называют также «сенсорными зонами», которые не являются строго ограниченными участками, они перекрывают друг друга. В соответствии с цитоархитектоническими и нейрофизиологическими данными выделяют проекционные (первичные и вторичные) и ассоциативные третичные зоны коры. Возбуждение от соответствующих рецепторов в первичные зоны направляется по быстропроводящим специфическим путям, тогда как активация вторичных и третичных (ассоциативных) зон происходит по полисинаптическим неспецифическим путям. Кроме того, корковые зоны связаны между собой многочисленными ассоциативными волокнами.Из общих принципов организации сенсорных систем следует выделить многоуровневость и многоканальность.На уровне коркового отдела осу­ществляются высший анализ и синтез афферентных возбуждений, обеспечивающие полное представление об окружающей среде.

    48. Классификация и функции рецепторов. Рецепторный и генераторный потенциал, их свойства.

    1) По локализации: экстерорецепторы (внешние: слуховые, зрительные, обонятельные, вкусовые, осязательные), интерорецепторы (внутренние) и проприорецепторы (рецепторы опорно- двигательного аппарата).

    2) По характеру восприятия : дистантные (получающие информацию на некотором расстоянии от источника раздражения - зрительные, слуховые и обонятельные), и контактные (возбуждающиеся при непосредственном соприкосновении с ним).

    3) В зависимости от природы раздражителя: механорецепторы (слуховые, гравитационные, вестибулярные, тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердечно-сосудистой системы); хеморецепторы (рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы); фоторецепторы; терморецепторы (кожи и внутренних органов, а также центральные термочувствительные нейроны); болевые (ноцицептивные) рецепторы.

    4) По структурно-функциональным особенностям: первичночувствующие (рецепторы обоняния, тактильные рецепторы и проприорецепторы - восприятие и преобразование энергии раздражения в энергию нервного возбуждения происходит у них в самом чувствительном нейроне) и вторичночувствующие (рецепторы вкуса, зрения, слуха, вестибулярного аппарата - между раздражителем и первым чувствительным нейроном находится высокоспециализированная рецепторная клетка)

    5) По качеству (модальности) ощущений: слуховые, зрительные, тактильные, обонятельные, температурные, болевые

    6) По своим основным свойствам рецепторы делятся также на быстро- и медленноадаптирующиеся, низко- и высокопороговые, мономодальные и полимодальиые

    Рецепторный потенциал возникает при раздражении рецептора как результат деполяризации и повышения проводимости участка его мембраны, который называется рецептивным. Рецептивный участок мембраны имеет специфические свойства, в том числе биохимические, отличающие его от мембраны тела и аксона. Возникший в рецептивных участках мембраны рецепторный потенциал электротонически распространяется на аксонный холмик рецепторного нейрона, где возникает генераторный потенциал. Возникновение генераторного потенциала в области аксонного холмика объясняется тем, что этот участок нейрона имеет более низкие пороги возбуждения и потенциал действия в нем развивается раньше, чем в других частях мембраны нейрона. Чем выше генераторный потенциал, тем интенсивнее частота разрядов распространяющегося потенциала действия от аксона к другим отделам нервной системы. Следовательно, частота разрядов рецепторного нейрона зависит от амплитуды генераторного потенциала.

    49. Рефлекторные механизмы контроля фокусирования изображения на сетчатку и её освещенности.

    Прежде чем попасть на сетчатку, световые лучи последовательно проходят через роговицу, жидкость передней камеры глаза, хрусталик и стекловидное тело, вместе образующие оптическую систему глаза. На каждом из этапов этого пути свет преломляется и в результате на сетчатке возникает уменьшенное и перевернутое изображение наблюдаемого предмета, этот процесс называется рефракцией. Преломляющая сила оптической системы глаза составляет около 58,6 диоптрий при рассматривании удаленных предметов и возрастает до приблизительно 70,5 диоптрий при фокусировании на сетчатку световых лучей, отраженных от близко распо¬ложенных предметов (1 диоптрия соответствует преломляющей силе линзы с фокусным расстоянием 1 м).

    Аккомодация

    Чтобы фокусировать на сетчатке световые лучи, отраженные от близко расположенных предметов, оптическая система глаза должна преломлять их тем сильней, чем ближе расположен наблюдаемый объект. Механизм, с помощью которого глаз настраивается на рассмотрение удаленных или близких предметов и в обоих случаях фокусирует их изображение на сетчатку, называется аккомодацией. Аккомодацию обеспечивают изменения кривизны хрусталика, зависимой от степени натяжения его тонкой и прозрачной капсулы, которая переходит по краям в циннову связку, прикрепляющуюся к ресничному телу. Гладкие мышцы ресничного тела, управляемые парасимпатическими нейронами, регулируют натяжение цинновой связки: при полном расслаблении мышц связка натягивает капсулу хрусталика, заставляя его принимать максимально уплощенную форму, необходимую для рассмотрения далеких предметов. При сокращении ресничных мышц натяжение цинновой связки уменьшается, хрусталик в силу своей эластичности принимает более выпуклую форму и поэтому сильнее преломляет световые лучи, что, например, происходит во время чтения этого текста. При максимальном сокращении ресничных мышц кривизна хрусталика становится максимальной, что позволяет фокусировать на сетчатке световые лучи, отраженные от ближайшей точки ясного видения. У детей эта точка расположена примерно в семи сантиметрах от глаза, но с возрастом эластичность хрусталика уменьшается, что ограничивает возможность увеличения его кривизны и соответственно преломляющей силы. В связи с возрастным уменьшением диапазона аккомодации (интервала изменения преломляющей силы хрусталика) ближайшая точка ясного видения постепенно удаляется. Возрастное уменьшение аккомодационной способности (пресбиопия, или возрастная дальнозоркость) принуждает человека использовать при чтении очки с двояковыпуклыми линзами.

    При наблюдении за движущимися в зрительном поле объектами, а также при движении человека относительно окружающего мира происходят следящие движения глаз, благодаря которым изображение в одной и той же области сетчатки сохраняется неизменным. При зрительном восприятии неподвижных объектов, имеющих многочисленные детали формы, а также во время чтения происходят быстрые движения глаз, предназначенные для фиксации наиболее информативных деталей объекта.

    При рассматривании любых объектов глаза ежесекундно совершают около трех очень быстрых непроизвольных и субъективно не ощущаемых движений, которые называются саккадами. Благодаря таким движениям изображение на сетчатке регулярно смещается, вызывая раздражение разных фоторецепторов. Необходимость саккад объясняется свойством зрительной системы сильнее реагировать на изменяющееся раздражение (появление или исчезновение стимула), тогда как на постоянную стимуляцию она отвечает слабо. При проецировании на сетчатку постоянного изображения с помощью миниатюрного проектора, прикрепленного к контактной линзе, это изображение перестает восприниматься спустя несколько секунд, и вместо него в зрительном ощущении появляется сплошное серое поле. По истечении нескольких секунд восприятие проецируемого на сетчатку изображения восстанавливается, но затем снова исчезает и т. д.

    Контроль освещенности – зрачковые рефлексы (воп. 50)


    50. Зрачковые рефлексы, их значение.

    Зрачковые рефлексы — непроизвольные сокращения (или же расслабления) гладкой мускулатуры радужной оболочки, приводящие к изменению величины зрачка. Различают рефлекторные зрачковые реакции (на свет, боль) и содружественные (на аккомодацию, конвергенцию). Ширина зрачка уменьшается при ярком свете благодаря сокращению кольцевых мышц, управляемых парасимпатическими волокнами глазодвигательного нерва, а при слабом освещении зрачок расширяется с помощью радиальных мышц, получающих симпатическую иннервацию. Уменьшая просвет зрачка, глаз защищается от избытка света, а увеличивая ширину зрачка, он повышает чувствительность зрительной системы к воспринимаемым стимулам. Сужение зрачков повышает глубину резкости, что позволяет лучше видеть удаленные предметы. При расширении зрачков глубина резкости снижается, а вместе с ней снижается острота зрения, которая характеризуется максимальной способностью глаза различать две соседние точки зрительного пространства как отдельные. В норме глаз различает две точки, видимые под углом в одну минуту при достаточно ярком освещении.


    51. Молекулярные механизмы зрения. Фотохимические и биоэлектрические процессы в рецепторах сетчатки при действии света

    Фоторецепторный слой сетчатки человека образован примерно 130 миллионами клеток, из которых около семи миллионов являются колбочками, основная масса которых сосредоточена в области центральной ямки, а все остальные фоторецепторы представлены палочками. У обеих разновидностей фоторецепторов существуют три функциональные области: 1) наружный, или внешний, сегмент, ориентированный в направлении эпителиального пигментного слоя и содержащий зрительный пигмент; 2) внутренний сегмент, в котором расположено клеточное ядро и происходят биохимические процессы, связанные с жизнедеятельностью клетки; 3) синаптические окончания, предназначенные для передачи информации от фоторецепторов к биполярным клеткам с помощью медиатора глутамата.

    Зрительный пигмент палочек родопсин состоит из двух компонентов: это молекула ретиналя, образующаяся из витамина А и способная поглощать свет, а также крупная белковая молекула опсина, не поглощающая свет. Молекула опсина представляет собой извитую цепь из 348 аминокислот, которая семь раз проходит через мембрану зрительного диска, образованного из клеточной мембраны фоторецептора. В наружном сегменте фоторецептора имеется большое количество таких дисков, расположенных подобно стопке поставленных друг на друга монет. Ретиналь существует в темноте как 11-цис-ретиналь, такая форма изомера идеально соответствует упорядоченному расположению аминокислот в опсине. Энергия поглощенных фотонов превращает ретиналь в 11-транс-изомер, что приводит к конформационным изменениям молекулы опсина и превращению родопсина в нестабильный метародопсин, который сразу же распадается на ретиналь и опсин. Таким образом, действие света уменьшает концентрацию родопсина в фоторецепторе, что приводит к изменениям активности вторичных посредников и величины мембранного потенциала фоторецептора. В темноте происходит ферментативный ресинтез расщепленного родопсина, для которого используется витамин А, поступающий в организм человека с пищей.

    Способность родопсина поглощать волны почти всего светового диапазона позволяет палочкам обеспечить только ахроматическое, т. е. черно-белое, зрение и лишает их возможности различать цвет -наиболее чувствительные фоторецепторы сетчатки, образуют скотопическую систему, или систему ночного зрения.

    Опсин колбочек отличается составом аминокислот, колбочки содержат меньшее количество зрительного пигмента - образуют фотопическую систему, или систему дневного зрения.

    В сетчатке человека существуют три типа колбочек, различающихся между собой по составу аминокислот в опсине зрительного пигмента. Различия в белковой части молекулы определяют особенности взаимодействия каждой из трех форм опсина с ретиналем и специфическую чувствительность к световым волнам разной длины - восприятие всей цветовой палитры.

    Биоэлектрические процессы. Специфической особенностью фоторецепторов является темновой ток катионов через открытые мембранные каналы внешних сегментов. Эти каналы открываются при высокой концентрации цГМФ, который является вторичным посредником рецепторного белка (зрительного пигмента). Темновой ток катионов деполяризует мембрану фоторецептора до приблизительно —40 мВ, что приводит к выделению медиатора в его синаптическом окончании. Активированные поглощением света молекулы зрительного пигмента стимулируют активность фосфодиэстеразы — фермента, расщепляющего цГМФ, поэтому при действии света на фоторецепторы в них уменьшается концентрация цГМФ. В результате управляемые этим посредником катионные каналы закрываются, и ток катионов в клетку прекращается. Вследствие непрерывного выхода ионов калия из клеток, мембрана фоторецепторов гиперполяризуется приблизительно до —70 мВ, эта гиперполяризация мембраны является рецепторным потенциалом. При возникновении рецепторного потенциала прекращается выделение глутамата в синаптических окончаниях фоторецептора.

    Фоторецепторы образуют синапсы с биполярными клетками двух типов, различающихся по способу управления хемозависимыми натриевыми каналами в синапсах. Действие глутамата приводит к открытию каналов для ионов натрия и деполяризации мембраны одних биполярных клеток и к закрытию натриевых каналов и гиперполяризации биполярных клеток другого типа. Наличие двух типов биполярных клеток необходимо для формирования антагонизма между центром и периферией рецептивных полей ганглиозных клеток.


    52. Функциональная характеристика палочковых и колбочковых фоторецепторов. Световая и темновая адаптация.

    Функциональная характеристика палочковых и колбочковых фоторецепторов – воп.51, см. выше.

    Временное ослепление при быстром переходе от темноты к яркому освещению исчезает спустя несколько секунд благодаря процессу световой адаптации. Одним из механизмов световой адаптации является рефлекторное сужение зрачков, другой зависит от концентрации ионов кальция в колбочках. При поглощении света в мембранах фоторецепторов закрываются катионные каналы, что прекращает вхождение ионов натрия и кальция и уменьшает их внутриклеточную концентрацию. Высокая концентрация ионов кальция в темноте подавляет активность гуанилатциклазы — фермента, определяющего образование цГМФ из гуанозинтрифосфата. Вследствие снижения концентрации кальция, обусловленного поглощением света, активность гуанилатциклазы повышается, что ведет к дополнительному синтезу цГМФ. Повышение концентрации этого вещества приводит к открытию катионных каналов, восстановлению тока катионов в клетку и, соответст¬венно, способности колбочек отвечать на световые раздражители как обычно. Низкая Концентрация ионов кальция способствует десенситизации колбочек, т. е. уменьшению их чувствительности к свету. Десенситизация обусловлена изменением свойств фосфодиэстеразы и белков катионных каналов, становящихся менее чувствительными к концентрации цГМФ.

    Способность различать окружающие предметы исчезает на некоторое время при быстром переходе от яркого света к темноте. Она постепенно восстанавливается в ходе темновой адаптации, обусловленной расширением зрачков и переключением зрительного восприятия с фотопической системы на скотопическую. Темновую адаптацию палочек определяют медленные изменения функциональной активности белков, приводящие к повышению их чувствительности. В механизме темновой адаптации участвуют и горизонтальные клетки, способствующие увеличению центральной части рецептивных полей в условиях низкой освещенности.

    53. Функции биполярных и ганглиозных клеток сетчатки. Формирование рецептивных полей с on-центрами и off-центрами, функции горизонтальных и амакриновых клеток.

    Выходные сигналы, передаваемые в ЦНС от сетчатки, возникают только в ганглиозных клетках, импульсная активность которых зависит от возбуждения фоторецепторов, а затем биполярных клеток, входящих в округлое рецептивное поле ганглиозной клетки. Размер рецептивных полей и количество фоторецепторов, относящихся к одному рецептивному полю, варьируют от минимального в области центральной ямки до наибольшего на периферии сетчатки. Малые рецептивные поля служат для различения мелких деталей наблюдаемых объектов в тех случаях, когда соседние детали воспринимаются под углом в несколько угловых минут. Большие рецептивные поля вмещают изображение целого объекта, воспринимаемого под углом в несколько угловых градусов (1° соответствует рецептивному полю на поверхности сетчатки с диаметром около 0,25 мм).

    Существуют два пути для передачи сигналов от фоторецепторов к ганглиозной клетке: прямой и непрямой. Прямой путь начинается от фоторецепторов, расположенных в центре рецептивного поля и образующих синапс с биполярной клеткой, которая через другой синапс действует на ганглиозную клетку. Непрямой путь берет начало от фоторецепторов периферии рецептивного поля, которая с центром состоит в реципрокных отношениях, обусловленных тормозным действием горизонтальных и амакриновых клеток (латеральное торможение). Но амакриновые клетки, в отличие от горизонтальных, образуют тормозные контакты не с фоторецепторными, а с ганглиозными клетками.

    Рецептивные поля с on-центрами и off-центрами

    В сетчатке человека имеются два типа ганглиозных клеток, отличающихся реакцией на точечные световые стимулы, воздействовавшие на центр или периферию их рецептивного поля. Примерно половина ганглиозных клеток возбуждается действием света на центр рецептивного поля и тормозится при действии светового стимула на периферию рецептивного поля. Такие клетки принято называть он-нейронами. Другая половина ганглиозных клеток возбуждается действием светового раздражителя на периферию рецептивного поля и тормозится в ответ на световую стимуляцию центра рецептивного поля — они получили название off-нейронов. Рецептивные поля ганглиозных клеток обоих типов в сетчатке представлены поровну, чередуясь друг с другом. Оба типа клеток очень слабо отвечают на равномерную диффузную засветку всего рецептивного поля, а наиболее сильным раздражителем для них является световой контраст, т. е. различная интенсивность засветки центра и периферии. Именно контрастирование деталей изображения дает необходимую информацию для зрительного восприятия в целом, тогда как абсолютная интенсивность отраженного от наблюдаемого объекта света не столь важна. Восприятие граней, т. е. восприятие контраста между соседними поверхностями с разной освещенностью, является наиболее информативным признаком изображения, определяющим протяженность и позиции разных объектов. 

    54. Физиологические механизмы восприятия цвета. Основные формы нарушения цветового восприятия.

    Теории цветового зрения:

    1. Трехкомпонентная теория цветового зрения. Постулирует наличие трех разных типов колбочек, которые работают как независимые приемники, комбинации получаемых от рецепторов сигналов обрабатываются в нейронных системах восприятия яркости и цвета. Существует 3 типа колбочек с поглощением в области:

    - 420 нм (синий) – цианолаб

    - 531 нм (красный) – пигмент зритролаб

    - 558 нм (зеленый) – хлоролаб

    2. Теория оппонентных цветов – явления одновременного цветового контраста и последовательного цветового контраста послужили основой для теории оппонентных цветов: при ассимиляции в восприятие вовлекается один цвет (н-р, красный), при диссимиляции – другой (зеленый), обоснованием служит феномен нервной индукции. Трехфазные нейроны: зеленый – деполяризация, красный, синий – гиперполяризация

    3. Зонная теория делает попытку объединения этих двух конкурирующих теорий и показывает, что трехкомпонентная теория пригодна для описания функционирования уровня рецепторов, а оппонентная теория – для описания нейронных систем более высокого уровня зрительной системы.

    Наиболее часто встречающимся видом нарушения цветового зрения является «дейтераномалия», расстройство восприятия зеленого цвета. При дейтераномалии зелёный цвет смешивается со светло-оранжевым, светло-розовым. Люди с дейтераномальным зрением могут даже не знать о своей аномалии. При еще одной разновидности нарушения цветового зрения, называемой «протаномалией» (слабость восприятия красного цвета) красный цвет смешивается со светло-зелёным, светло-коричневым. Цветовая слепота в сине-фиолетовой области спектра называется «тританомалия»; она встречается крайне редко и практического значения не имеет. При тританомалии все цвета спектра представляются оттенками красного или зелёного.

    Люди, различающие только два цвета из трех основных, обладают двухцветным зрением, что значительно более серьезнее, чем аномалия трихромазии, о которой рассказывалось выше. Двухцветное зрение бывает трех видов:

    Дейтеранопия – слепота на зеленый цвет (длинные волны)

    Протанопия – слепота на красный цвет (средние волны)

    Тританопия – цветовая слепота на синий цвет (короткие волны).

    Монохромазия – еще одна разновидность нарушения цветового восприятия. Монохроматы видят все в черном и белом цветах и оттенках серого. Различают два вида монохромазии: монохромазия палочки (клетка сетчатки глаза) и монохромазия колбочки сетчатки. Первый вид цветовой слепоты также называют ахроматопсией. При этом виде нарушения люди страдают плохим зрением и высокой чувствительностью к свету. У некоторых может развиться нистагм (непроизвольные ритмические двухфазные движения глазных яблок).

    55. Проводниковый отдел зрительной сенсорной системы. Принцип ретинотипической организации зрительной сенсорной системы

    Аксоны ганглиозных клеток образуют зрительный нерв, состоящий приблизительно из одного миллиона волокон. Войдя через зрительные отверстия в череп, правый и левый зрительные нервы сходятся друг с другом и частично перекрещиваются: волокна от носовых половин сетчаток переходят на противоположную сторону, волокна от височных половин сетчаток следуют ипсилатерально. В результате частичного перекреста образуются правый и левый зрительные тракты, передающие информацию от противоположной половины зрительного поля.

    Окончания аксонов ганглиозных клеток на нейронах претектальной области среднего мозга служат для осуществления зрачкового рефлекса. Аксоны, следующие к верхним буграм четверохолмия, переносят информацию, необходимую для осуществления глазодвигательных рефлексов и ориентировочных реакций. Проводящий путь от сетчатки к гипоталамусу предназначен для синхронизации эндогенного циркадианного 24-часового ритма с естественным чередованием светлого и темного времени суток. Собственно сенсорная функция, т. е. восприятие зрительной информации, обеспечивается при участии латерального коленчатого тела, принимающего информацию от сетчатки и передающего ее в зрительную кору.

    Функциональная организация латерального коленчатого тела

    Аксоны ганглиозных клеток образуют топографически организованные соединения с нейронами латерального коленчатого тела, которые представлены шестью слоями клеток. Два первых слоя, расположенные вентрально, состоят из магноцеллюлярных клеток, имеющих синапсы с М-клетками сетчатки, причем первый слой получает сигналы от носовой половины сетчатки контралатерального глаза, а второй — от височной половины ипсилатерального глаза. Остальные четыре слоя клеток, расположенные дорсальнее, получают сигналы от Р-клеток сетчатки: четвертый и шестой — от носовой половины сетчатки контралатерального, а третий и пятый — от височной половины сетчатки ипсилатерального глаза. В результате такой организации афферентных входов в каждом латеральном коленчатом теле, т. е. левом и правом, формируются шесть расположенных точно одна над

    другой нейронных карт противоположной половины зрительного поля. Нейронные карты организованы ретинотопически, в каждой из них около 25 % клеток получают информацию от фоторецепторов центральной ямки. Рецептивные поля нейронов латерального коленчатого тела имеют округлую форму с центрами on- или off-типа и антагонистичной по отношению к центру периферией. К каждому нейрону конвергирует небольшое количество аксонов ганглиозных клеток, и потому характер передающейся зрительной коре информации здесь почти не изменяется. Сигналы от парвоцеллюлярных и магноцеллюлярных клеток сетчатки перерабатываются независимо друг от друга и передаются в зрительную кору параллельными путями. Нейроны латерального коленчатого тела получают от сетчатки не более 20 % афферентных входов, а остальные афференты образованы в основном нейронами ретикулярной формации и коры. Эти входы в латеральное коленчатое тело регулируют передачу сигналов от сетчатки к коре.
    56. Первичная и вторичная зрительная кора. Простые и сложные клетки зрительной коры. Ассоциативная зрительная кора.

    Информация от сетчатки глаз передается по волокнам зрительных нервов и поступает к нейронам латеральных коленчатых тел, относящихся к таламусу. Релейные нейроны латеральных коленчатых тел образуют ретинотопическую проекцию на кортикальные колонки 17-го поля. Это поле занимает около четверти поверхности затылочной области преимущественно на внутренней стороне каждого полушария. 17-е поле является первичной зрительной корой, в которой каждый участок соответствует определенной точке сетчатки, причем область центральной ямки представлена с наибольшим разрешением и занимает около половины всей поверхности первичной зрительной коры.

    В зрительной коре существует около 20 популяций простых нейронов, каждая из которых возбуждается линейным стимулом, отличающимся по своему наклону от остальных минимум на 10°. Комплексные (сложные) нейроны отличаются от простых большей величиной рецептивного поля и обычно возбуждаются в момент движения стимула в строго определенном направлении, тогда как линейная ориентация имеет для них меньшее значение, чем для простых нейронов. Многие комплексные нейроны бинокулярны, т. е. способны реагировать на стимуляцию обоих глаз, в то же время им присуща глазодоминантностъ, т. е. большая реакция на стимуляцию одного из глаз. Простые и комплексные нейроны, сходные по своей чувствительности к стимулу определенной линейной ориентации, образуют вертикальнуюориентационную колонку. Соседние колонки различаются систематическим изменением оси линейной ориентации стимула, которая от одной колонки к другой смещается приблизительно на 10° Помимо этого в комплект входят две глазодоминантные колонки, одна из которых получает информацию только от левого, а другая — только от правого глаза. Еще одним обязательным компонентом такого набора колонок является несколько скоплений клеток, предназначенных для восприятия цвета и расположенных в виде вставок или капель (blobs) между ориентационными колонками. Полный комплект, включающий ориентационные, глазодоминантные колонки и воспринимающие цвет вставки-blobs, получил название гиперколонки, которая является элементарным модулем переработки зрительной информации.

    Вторичная зрительная кора примыкает к первичной зрительной коре и занимает 18-е и 19-е поля затылочных долей. В них, однако, процесс переработки зрительной информации не завершается, и у человека в нем участвует свыше 30 регионов, связанных между собой сетью нейронных переключений. Эти регионы различаются между собой по выполняемой функции.

    Существуют два пути, начинающихся в первичной зрительной коре и предназначенных для раздельной переработки зрительной информации: вентральный и дорсальный. Вентральный путь проходит к нижней височной извилине, где обнаружены нейроны, имеющие очень большие рецептивные поля. В этой области отсутствует ретинотопическая организация, в ней происходит опознание зрительных стимулов, устанавливается их форма, величина и цвет. Здесь имеются лицеспецифические нейроны, избирательно реагирующие на появление в зрительном поле лица человека, причем одни нейроны активируются, если лицо повернуто в профиль, а другие реагируют на поворот в фас. При поражении этой области может возникнуть прозопагнозия, при которой человек перестает узнавать знакомые ему лица. В средней, а также в верхней височной извилинах находятся нейроны, необходимые для восприятия движущихся объектов и для фиксации внимания на неподвижных объектах.

    Дорсальный путь из первичной зрительной коры ведет к заднетеменным областям. Его функциональное значение заключается в определении взаимного пространственного расположения всех одновременно действующих зрительных стимулов. Повреждение этой области коры приводит к дефекту пространственных ощущений и нарушению зрительно-моторной интеграции: человек видит предмет и может правильно описать его форму и цвет, но при попытке взять этот предмет рукой промахивается. Для удобства запоминания вентральный путь принято ассоциировать с вопросом, «что» представляет собой объект, а дорсальный путь — с вопросом, «где» этот объект находится.

    57. Звукопроводящий аппарат наружного и среднего уха. Физиологические механизмы регуляции передачи звука через среднее ухо

    Наружное ухо. Движения ушных раковин млекопитающих в направлении источника звука помогают обнаружить его пространственное расположение, эта функция определяется как ототопика. Большинство людей не могут изменять положение ушных раковин, а сохранность такой способности у человека квалифицируется как атавизм. Функцию ототопики у человека выполняют рельеф ушных раковин и их расположение на противоположных сторонах головы, позволяющее различать поступление звука спереди или сзади. Наружный слуховой проход ведет к барабанной перепонке, представляющей вогнутую в полость среднего уха перегородку, которая приводится в колебания распространяющимися звуковыми волнами. Ориентация коллагеновых волокон барабанной перепонки позволяет ей колебаться с частотой действующих звуковых волн относительно оси, расположенной вблизи ее верхнего края.

    Среднее ухо. Воздушная полость среднего уха соединяется евстахиевой трубой с носоглоткой, что позволяет выравнивать давление в среднем ухе по атмосферному давлению (соприкасающиеся стенки евстахиевой трубы раскрываются при глотательных движениях). В полости среднего уха имеются три подвижно сочлененные слуховые косточки (молоточек, наковальня и стремечко), служащие для передачи колебаний от барабанной перепонки к овальному окну, которое ведет в вестибулярную часть внутреннего уха. Рукоятка молоточка прикреплена к барабанной перепонке, а основание стремечка закрывает овальное окно, подвижную связь между ними обеспечивает наковальня. Колебания барабанной перепонки сообщаются молоточку, рукоятка которого в полтора раза длиннее отростка наковальни; благодаря этому создается рычаг, повышающий силу колебаний стремечка. Увеличение силы колебаний необходимо для их передачи из воздушной среды среднего уха в заполненную жидкостью полость внутреннего уха. Решению этой задачи способствует и большая площадь барабанной перепонки по сравнению с площадью овального окна, соотносящихся между собой как 20:1.

    При высоких значениях звукового давления амплитуда колебаний слуховых косточек уменьшается вследствие рефлекторного сокращения двух мышц, прикрепленных к рукоятке молоточка и стремечку. При сокращении одной из них (m. tensor tympani) увеличивается натяжение барабанной перепонки, что ведет к уменьшению амплитуды ее колебаний, а сокращение другой мышцы (m. stapedius) ограничивает колебания стремечка. Эти мышцы участвуют в приспособлении слуховой системы к звукам высокой интенсивности и начинают сокращаться примерно через 10 мс после начала действия звука, превышающего 40 дБ.

    58. Звуковоспринимающий аппарат уха. Механизм активации рецепторов Кортиева органа. Электрические потенциалы внутреннего уха.

    Внутри среднего канала улитки на основной мембране расположен звуковоспринимающий аппарат — спиральный (кортиева) орган, содержащий рецепторные волосковые клетки (вторично-чувствующие механорецепторы). Эти клетки трансформируют механические колебания в электрические потенциалы.

    Передача звуковых колебаний по каналам улитки. Колебания мембраны овального окна преддверия вызывают колебания перилимфы в верхнем и нижнем каналах улитки, которые доходят до круглого окна улитки. Преддверная мембрана очень тонкая, поэтому жидкость в верхнем и среднем каналах колеблется так, как будто оба канала едины. Упругим элементом, отделяющим этот как бы общий верхний канал от нижнего, является основная мембрана. Звуковые колебания, распространяющиеся по перилимфе и эндолимфе верхнего и среднего каналов как бегущая волна, приводят в движение эту мембрану и через нее передаются на перилимфу нижнего канала.

    Расположение и структура рецепторных клеток спирального органа. На основной мембране расположены два вида рецепторных волосковых клеток (вторично-чувствующих механорецепторов): внутренние и наружные, отделенные друг от друга кортиевыми дугами. Внутренние волосковые клетки располагаются в один ряд; общее число их по всей длине перепончатого канала достигает 3500. Наружные волосковые клетки располагаются в 3—4 ряда; общее число их 12 000—20 000. Каждая волосковая клетка имеет удлиненную форму; один ее полюс фиксирован на основной мембране, второй находится в полости перепончатого канала улитки. На конце этого полюса есть волоски, или стереоцилии. Волоски рецепторных клеток омываются эндолимфой и контактируют с покровной (текториальной) мембраной, которая по всему ходу перепончатого канала расположена над волосковыми клетками.

    Механизмы слуховой рецепции. При действии звука основная мембрана начинает колебаться, наиболее длинные волоски рецепторных клеток (стереоцилии) касаются покровной мембраны и несколько наклоняются. Отклонение волоска на несколько градусов приводит к натяжению тончайших вертикальных нитей (микрофиламент), связывающих между собой верхушки соседних волосков данной клетки. Это натяжение чисто механически открывает от 1 до 5 ионных каналов в мембране стереоцилии. Через открытый канал в волосок начинает течь калиевый ионный ток. Сила натяжения нити, необходимая для открывания одного канала, ничтожна, около 2 • 10-13 ньютонов. Наиболее слабые из ощущаемых человеком звуков растягивают вертикальные нити, связывающие верхушки соседних стереоцилии, на расстояние, вдвое меньшее, чем диаметр атома водорода.

    Тот факт, что электрический ответ слухового рецептора достигает максимума уже через 100—500 мкс (микросекунд), означает, что ионные каналы мембраны открываются непосредственно механическим стимулом без участия вторичных внутриклеточных посредников. Это отличает механорецепторы от значительно медленнее работающих фоторецепторов.

    Деполяризация пресинаптического окончания волосковой клетки приводит к выходу в синаптическую щель нейромедиатора (глутамата или аспартата). Воздействуя на постсинаптическую мембрану афферентного волокна, медиатор вызывает генерацию в нем возбуждающего постсинаптического потенциала и далее генерацию распространяющихся в нервные центры импульсов.

    Открывания всего нескольких ионных каналов в мембране одной стереоцилии явно мало для возникновения рецепторного потенциала достаточной величины. Важным механизмом усиления сенсорного сигнала на рецепторном уровне слуховой системы является механическое взаимодействие всех стереоцилии (около 100) каждой волосковой клетки. Оказалось, что все стереоцилии одного рецептора связаны между собой в пучок тонкими поперечными нитями. Поэтому, когда сгибаются один или несколько более длинных волосков, они тянут за собой все остальные волоски. В результате этого открываются ионные каналы всех волосков, обеспечивая достаточную величину рецепторного потенциала.

    Микрофонный потенциал - колебательный процесс, частота которого соответствует характеристикам акустического стимула. Этот потенциал представляет собой сумму рецепторных потенциалов некоторого числа волосковых клеток. Основная мембрана расширяется по направлению к вершине. Над кортиевым органом – текториальная (покровная) мембрана (из соед.тк.). Один ее край закреплен, др. – свободен. Волоски наружных и внутренних волосковых клеток соприкасаются с текториальной мембраной => изменяется проводимость ионных каналов рецепторных (волосковых) клеток => микрофонный и суммационный рецепторные потенциалы. => образуется и выделяется медиатор – ацетилхолин в синаптическую щель рецепторно-афферентного синапса => возбуждение волокна слухового нерва => ПД в нем =>трансформация энергии звуковых волн в нервный импульс.

    59. Механизмы восприятия звуков разной частоты и силы. Бинауральный слух.

    Теория места: в базальной части кортиева органа располагаются рецепторные клетки, воспринимающие более высокие частоты, а в апикальной части на вершине улитки – клетки, воспринимающие только низкие частоты.

    • В 1863 году А. Гельмгольц сформулировал резонансную теорию, согласно которой разные частоты кодируются своим точным положением вдоль базилярной мембраны. Последняя может действовать как набор поперечно натянутых эластичных резонирующих полос, подобных струнам рояля. Самые короткие (у основания улитки) резонируют в ответ на высокие частоты, а длинные, у вершины улитки – на самые низкие частоты. Эта теория основывалась на том, что базилярная мембрана натянута по ширине, и связь по ее длине отсутствует.

    • В 50-60-е годы 20 века Г.Бекеши предложил «Теорию бегущей волны», доказав, что базилярная мембрана не натянута поперечно и имеет связь по всей длине. Он установил, базилярная мембрана жестче всего у основания, к вершине жесткость ее постепенно уменьшается. При колебании мембраны, волны «бегут» от основания к вершине улитки. Высокочастотные колебания распространяются по базилярной мембране на короткие расстояния, а длинные распространяются довольно далеко к вершине. Таким образом жесткая часть базилярной мембраны служит высокочастотным фильтром.

    В ядрах верхних олив большинство нейронов возбуждается бинаурально, т. е. в ответ на сигналы, поступающие как от ипсилатерального, так и от контралатерального уха. Однако часть имеющихся в этих ядрах нейронов реагирует на сигналы, поступившие только от одного уха, и тормозится сигналами от противоположного уха. Существование таких нейронов обеспечивает сравнительный анализ звуковых сигналов, возникающих с левой или правой от человека стороны, что необходимо для его пространственной ориентации. Некоторые нейроны ядер верхней оливы максимально активны при расхождении времени поступления сигналов от правого и левого уха, другие нейроны наиболее сильно реагируют на различную интенсивность сигналов.

    Такие нейроны образуют проекцию на верхние бугры четверохолмия, куда одновременно поступает зрительная информация, что позволяет нейронам четверохолмия создавать трехмерную карту слухового пространства и определять пространственное положение источника звука. Благодаря бинау-ральному слуху сенсорная система человека определяет источники звука, находящиеся в стороне от средней линии, поскольку звуковые волны раньше действуют на ближнее к этому источнику ухо. Слуховая система реагирует на 1 дБ различий звукового давления, действующего на правое и левое ухо, и фиксирует временное запаздывание действия звука на отдаленное от него ухо всего в 3 • 10-5 с.

    60. Тактильная чувствительность. Виды механорецепторов кожи. Пространственный порог тактильной чувствительности. Механизмы адаптации тактильной чувствительности.

    1   ...   5   6   7   8   9   10   11   12   ...   35


    написать администратору сайта