Главная страница
Навигация по странице:

  • 55.Микроциркуляция. Транспорт веществ через стенку

  • 56.Дыхание: этапы; механизмы вдоха и выдоха. Ротовое и

  • 57.Регуляция внешнего дыхания: дыхательный центр, его

  • 1. Возбудимость и возбуждение Возбудимость


    Скачать 0.7 Mb.
    Название1. Возбудимость и возбуждение Возбудимость
    Дата18.01.2019
    Размер0.7 Mb.
    Формат файлаpdf
    Имя файла2_5336961486252147232.pdf
    ТипДокументы
    #64287
    страница11 из 14
    1   ...   6   7   8   9   10   11   12   13   14
    54. Артериальное давление; факторы, его определяющие.
    Артериальное давление(АД) - это давление крови, внутри стенок сосудов.
    АД является интегральным показателем функционирования ССС.
    По величине показателей АД можно судить о:
    1.насосной фунции сердца
    2.тонусе резистивных сосудов( артериолы, прекапиллярные сфинктеры)
    3.объеме циркулирующей крови
    АД(в покое)=110-125/70-80 мм рт.ст.
    От величины АД зависит объемная скорость кровотока и адекватное кровоснабжение органов и тканей в соответствии с их функциональной активностью.
    Факторы, определяющие движение крови по сосудам:
    1.Насосная функция сердца и градиент давления, создаваемый сердцем. ГД=120 2.Отрицательное давление грудной полости
    3.Присасывающая способность сердца
    4.Мышечный насос (фазное сокращение скелетных мышц)
    Виды артериального давления:
    1)Систолическое - это давление, которое создается в результате систолы левого желудочка. У взрослых оно должно быть не выше 139 мм рт.ст.
    2)Диастолическое - наименьшая величина давления крови в конце диастолы. Уровень диастолического давления в основном определяется величиной тонуса резистивних сосудов. У взрослых людей это давление должно быть не выше 89 мм рт.ст.
    3)Пульсовое давление - это разница между величинами систоличного и диастоличного давлению.
    Методы определения. Определять величину АД можно с помощью прямых и непрямых методов.
    Прямой метод - основывается на непосредственном введении в кровяное русло иглы соединенной с манометром.
    Непрямой метод – основывается на регистрации изменения кровенаполнения в условиях дозированной компрессии и декомпрессии, создаваемые манжетой соединенной с манометром:
    1.Пальпаторный (Рива-Роччи), определяет систолическое артериальное давление. Для этого обследуемому накладывают на плечевую часть левой руки полую резиновую манжету, соединенную с грушей для нагнетания воздуха и манометром (ртутным, стрелочным или цифровым). При надувании манжета сдавливает плечевую часть руки, и манометр показывает величину давления в манжете. Если поднять давление в манжете выше уровня систолического (верхнего) артериального давления крови, то манжета перекрывает просвет артерии и кровоток в ней прекращается.
    2.Аускультативный (Короткова), который позволяет установить систолическое и диастолическое артериальное давление.
    3.Осциллографический - для установления систолического, диастолического и среднединамического артериального давления.
    55.Микроциркуляция. Транспорт веществ через стенку
    Микроциркуляция - это движение крови по сосудам микроциркуляторного русла. Капилляры, относятся к обменным сосудам. Οʜᴎ Обеспечивают газообмен, снабжение клеток питательными, пластическими веществами, и выведение продуктов метаболизма. Стенка капилляров представляет собой полупроницаемую мембрану, тесно связанную функционально и морфологически с межклеточным веществом, то есть капилляры неотделимы от органов, они являются составной частью самих органов.
    Обмен осуществляемый через стенку капилляров, между кровью и интерстициальной жидкостью тканей, которые снабжаются этими капиллярами. Из крови микроциркуляторного русла в интерстициальную жидкость поступают вещества необходимые для метаболизма тканей, а из интерстициальной жидкости в кровь транспортируются конечные продукты метаболизма.
    Различают три способа обмена веществами через стенку кровеносных капилляров:
    1.обмен путем диффузии
    2.обмен путем фильтрации и реабсорбции
    3.обмен путем пиноцитоза.

    1)Диффузия происходит за счет градиента концентрации в-в. Диффузия имеет 2-сторонний характер, скорость очень высокая. Проходя через капилляр жидкость плазмы 40 раз, полностью обменивается с межклеточной жидкостью. Через общую обменную поверхность организма скорость диффузии приблизительно равна 60 л/мин, в сутки составляет в среднем 85000 л. Неполярные (жирорастворимые) вещества и мелкие незаряженные молекулы (O2, CO2, NH3 и вода) могут диффундировать непосредственно через стенку капилляров, без крайне важности движения через поры. Скорость их диффузии через стенку капилляра во много раз выше скорости транспорта полярных молекул.
    Полярные вещества (Na+, K+, Cl–, Ca2+; сахара, нуклеотиды, макромолекулы белка и нукл к-т) сами по себе не проникают через мембраны, для их транспорта необходимы переносчики и ионные каналы
    (поры). Разность концентраций веществ по обе стороны капиллярной мембраны влияет на скорость диффузии.
    2) Интенсивность фильтрации и реабсорбции зависят от следующих переменных: гидростатического давления в капиллярах ( Pгк), гидростатического давления в интерстициальной жидкости тканей ( Pгт), онкотического давления плазмы крови капилляра ( Pок), онкотического давления межклеточной жидкости тканей ( Pот), коэффициента фильтрации ( K).
    Под действием Pгк и Pот жидкость выходит из капилляра в ткани, а под действием Pгт и Pок - движется из тканей в кровь.
    3) Обмен веществами через стенки капилляров путем пиноцитоза. Крупные молекулы, не способны проникать через поры капилляров. При этом мембрана клетки капилляра инвагинируется, образуя вакуоль, окружающую молекулу. После этого на противоположной стороне клетки происходит обратный процесс (эмиоцитоз). Через стенку капилляра свободно диффундируют вещества, растворяющие жиры, а также кислород и двуокись углерода. Поскольку диффузия этих веществ идет по всей поверхности мембраны капилляра, а не только по распределенным по стенке капилляра специальным каналам, скорость их транспорта гораздо выше, чем водорастворимых веществ.
    Регуляция кровообращения в сосудистой системе челюстно-лицевой области и полости рта осуществляется нейро- и миогенными механизмами. Подобно сосудам других областей сосуды челюстей и пульпы зуба получают по симпатическим волокнам тоническую импульсацию от сосудодвигательного центра продолговатого мозга. Симпатическая иннервация осуществляется в основном волокнами, отходящими от верхнего шейного симпатического узла. Средняя частота тонической импульсации в констрикторных волокнах этой области равна 1 -2 имп./с. Тоническая импульсация вазоконстрикторных волокон имеет существенное значение для поддержания тонуса резистивных сосудов, так как нейрогенный тонус является преобладающим в этих сосудах челюстно-лицевой области.
    Констрикторные реакции резистентных сосудов челюстно-лицевой области и пульпы зуба на импульсы симпатических волокон осуществляются путем освобождения в их синаптических окончаниях норадреналина и возбуждения альфа-адренорецепторов. Однако, в сосудах челюстей обнаружены и бета-адренорецепторы, возбуждение которых приводит к расширению сосудов. Сосуды челюстно-лицевой области обладают также собственно миогенным местным механизмом регуляции тонуса. Повышение миогенного тонуса артериол и прекапиллярных сфинктеров приводит к резкому сужению и даже частичному закрытию микроциркуляторного русла, что значительно ограничивает транскапиллярный обмен. Это предотвращает усиленную фильтрацию жидкости в ткани и повышение внутрисосудистого давления крови, т. е. является физиологической защитой тканей от развития отека.
    Миогенный механизм регуляции кровотока и транскапиллярного обмена играет особую роль в обеспечении жизнедеятельности пульпы, находящейся в замкнутом пространстве, ограниченном стенками полости зуба. Ослабление регуляторных механизмов миогенного тонуса сосудов может явиться одним из существенных факторов развития отека тканей пульпы, пародонта и других участков тканей полости рта при воспалении. В гуморальной регуляции тонуса сосудов челюстно-лицевой области, кроме адреналина, могут принимать участие вазопрессин, ангиотензин-П, серотонин, гистамин, простагландины, брадикинин.
    56.Дыхание: этапы; механизмы вдоха и выдоха. Ротовое и
    Дыхание – сложный непрерывный процесс, в результате которого постоянно обновляется газовый состав крови. В процессе дыхания различают три звена: внешнее(легочное) дыхание, транспорт газов кровью и внутреннее
    (тканевое) дыхание.
    1.Внешнее дыхание — это газообмен между организмом и окружающим его атмосферным воздухом.
    Осуществляется в два этапа — обмен газов между атмосферным и альвеолярным воздухом и газообмен между
    кровью легочных капилляров и альвеолярным воздухом. Аппарат внешнего дыхания включает в себя дыхательные пути, легкие, плевру, скелет грудной клетки и ее мышцы, а также диафрагму. Основной функцией аппарата внешнего дыхания является обеспечение организма кислородом и освобождение его от избытка углекислого газа. О функциональном состоянии аппарата внешнего дыхания можно судить по ритму, глубине, частоте дыхания, по величине легочных объемов, по показателям поглощения кислорода и выделения углекислого газа и т. д.
    2.Транспорт газов осуществляется кровью. Он обеспечивается разностью парциального давления газов по пути их следования: кислорода от легких к тканям, углекислого газа от клеток к легким.
    3.Внутреннее (тканевое) дыхание также может быть разделено на два этапа. Первый - обмен газов между кровью и тканями. Второй — потребление кислорода клетками и выделение ими углекислого газа (клеточное дыхание).
    ДЫХАТЕЛЬНЫЙ ЦИКЛ. Дыхательный цикл состоит из вдоха, выдоха и дыхательной паузы. Длительность вдоха у взрослого человека от 0,9 до 4,7 с, длительность выдоха — 1,2—6 с. Дыхательная пауза различна по величине и даже может отсутствовать. Дыхательные движения совершаются с определенным ритмом и частотой, которые определяют по числу экскурсий грудной клетки в 1 мин. У взрослого человека частота дыхательных движений составляет 12—18 в 1 мин. Глубину дыхательных движений определяют по амплитуде экскурсий грудной клетки и с помощью специальных методов, позволяющих исследовать легочные объемы.
    Механизм вдоха. Вдох обеспечивается расширением грудной клетки вследствие сокращения дыхательных мышц
    –диафрагма, наружные межреберные и межхрящевые мышцы. При спокойном дыхании объем грудной клетки изменяется в основном за счет сокращения диафрагмы и перемещения ее купола. При глубоком форсированном дыхании в инспирации участвуют дополнительные, или вспомога
    ​тельные, мышцы вдоха: трапециевидные, передние лестничные и грудино-ключично-сосцевидные мышцы. Лестничные мышцы поднимают два верхних ребра и активны при спокойном дыхании. Грудино-ключично-сосцевидные мышцы поднимают грудину и увеличивают сагиттальный диаметр грудной клетки. Поступление воздуха в легкие в значительной степени зависит от отрицательного давления в плевральной полости.
    Механизм выдоха. Выдох (экспирация) осуществляется в результате расслабления дыхательной мускулатуры
    (Экспираторными мышцами являются внутренние межреберные и мышцы брюшной стенки, или мышцы живота.Последние нередко относят к главным экспираторным мышцам.), а также вследствие эластической тяги легких, стремящихся занять исходное положение. Эластические силы легких представлены тканевым компонентом и силами поверхностного натяжения, которые стремятся сократить альвеолярную сферическую поверхность до минимума. Однако альвеолы в норме никогда не спадаются. Причина этого – наличие в стенках альвеол поверхностно-активного стабилизирующего вещества – сурфактанта, вырабатываемого альвеолоцитами. Легкие — парные дыхательные органы, расположенные в герметически замкнутой грудной полости. Их воздухоносные пути представлены носоглоткой, гортанью, трахеей. Трахея в грудной полости делится на два бронха — правый и левый, каждый из которых, многократно разветвляясь, образует бронхиальное дерево. Мельчайшие бронхи — бронхиолы на концах расширяются в слепые пузырьки — легочные альвеолы. В дыхательных путях газообмен не происходит, и состав воздуха не меняется. Пространство, заключенное в дыхательных путях называется мертвым, или вредным.
    При спокойном дыхании объем воздуха в мертвом пространстве составляет 140—150 мл. Строение легких обеспечивает выполнение ими дыхательной функции. Наличие эластических элементов и гладких мышечных волокон обеспечивает быстрое и легкое растяжение альвеол, благодаря чему они могут вмещать большие количества воздуха. Каждая альвеола покрыта густой сетью капилляров, на которые разветвляется легочная артерия. Каждое легкое покрыто снаружи серозной оболочкой — плеврой, состоящей из двух листков: пристеночного и легочного (висцерального). Между листками плевры имеется узкая щель, заполненная серозной жидкостью — плевральная полость. Расправление и спадение легочных альвеол, а также движение воздуха по воздухоносным путям сопровождается возникновением дыхательных шумов, которые можно исследовать методом выслушивания (аускультации). Давление в плевральной полости и в средостении в норме всегда отрицательное. За счет этого альвеолы всегда находятся в растянутом состоянии. Отрицательное внутригрудное давление играет значительную роль в гемодинамике, обеспечивая венозный возврат крови к сердцу и улучшая кровообращение в легочном круге, особенно в фазу вдоха.
    57.Регуляция внешнего дыхания: дыхательный центр, его
    Основная функция дыхательной системы заключается в обеспечении газообмена О2 и СО2 между окружающей средой и организмом в соответствии с его метаболическими потребностями. В целом эту функцию регулирует сеть многочисленных нейронов ЦНС, которые связаны с ДЦ продолговатого мозга.
    Перерезка продолговатого мозга в области дна IV желудочка приводит к прекращению дыхания. Поэтому под главным дыхательным центром понимают совокупность нейронов специфических дыхательных ядер продолговатого мозга.

    Дыхательный центр управляет двумя основными функциями: двигательной, которая проявляется в виде сокращения дыхательных мышц, и гомеостатической, связанной с поддержанием постоянства внутренней среды организма при сдвигах в ней содержания 02 и СО2. Двигательная (моторная) функция дыхательного центра заключается в генерации дыхательного ритма и его паттерна. Под паттерном дыхания следует иметь в виду длительность вдоха и выдоха, величину дыхательного объема, минутного объема дыхания. Гомеостатическая функция дыхательного центра поддерживает стабильные величины дыхательных газов в крови и внеклеточной жидкости мозга, адаптирует дыхательную функцию к условиям измененной газовой среды и другим факторам среды обитания.
    Локализация и функциональные свойства дыхательных нейронов. В передних рогах спинного мозга на уровне С3 - С5 располагаются мотонейроны, образующие диафрагмальный нерв. Мотонейроны, иннервирующие межреберные мышцы, находятся в передних рогах на уровнях Т2 - Т10. Установлено, что одни мотонейроны регулируют преимущественно дыхательную, а другие - преимущественно познотоническую активность межреберных мышц.
    Нейроны бульбарного дыхательного центра располагаются на дне IV желудочка в медиальной части ретикулярной формации продолговатого мозга и образуют дорсальную и вентральную дыхательные группы. Дыхательные нейроны, активность которых вызывает инспирацию или экспирацию, называются соответственно инспираторными и экспираторными нейронами. Между группами нейронов, управляющими вдохом и выдохом, существуют реципрокные отношения. Возбуждение экспираторного центра сопровождается торможением в инспираторном центре и наоборот. Инспираторные и экспираторные нейроны, в свою очередь, делятся на "ранние" и "поздние". Каждый дыхательный цикл начинается с активизации "ранних" инспираторных нейронов, затем возбуждаются "поздние" инспираторные нейроны. Также последовательно возбуждаются "ранние" и "поздние" экспираторные нейроны, которые тормозят инспираторные нейроны и прекращают вдох. Современные исследования показали, что в продолговатом мозге нет четкого деления на инспираторный и экспираторный отделы, а есть скопления дыхательных нейронов с определенной функцией
    ​.
    В варолиевом мосту
    ​находятся ядра дыхательных нейронов, образующих пневмотаксический центр.
    Дыхательные нейроны продолговатого мозга и варолиева моста связаны между собой восходящими и нисходящими нервными путями и функционируют согласованно. Получив импульсы от инспираторного центра продолговатого мозга, пневмотаксический центр посылает их к экспираторному центру продолговатого мозга, возбуждая последний. Инспираторные нейроны тормозятся. Разрушение мозга между продолговатым мозгом и мостом удлиняет фазу вдоха. Гипоталамические ядра координируют связь дыхания с кровообращением. Определенные зоны
    ​коры больших полушарий​ осуществляют произвольную регуляцию дыхания в соответствии с особенностями влияния на организм факторов внешней среды и связанными с этим гомеостатическими сдвигами.
    Рефлекторная регуляция дыхания
    Нейроны дыхательного центра имеют связи с многочисленными механорецепторами дыхательных путей и альвеол легких и рецепторов сосудистых рефлексогенных зон. Благодаря этим связям осуществляется весьма многообразная, сложная и биологически важная рефлекторная регуляция дыхания и ее координация с другими функциями организма. Различают несколько типов механорецепторов: медленно адаптирующиеся рецепторы растяжения легких, ирритантные быстро адаптирующиеся механорецепторы и J-рецепторы - "юкстакапиллярные" рецепторы легких.
    Медленно адаптирующиеся рецепторы
    ​ растяжения легких расположены в гладких мышцах трахеи и бронхов. Эти рецепторы возбуждаются при вдохе, импульсы от них по афферентным волокнам блуждающего нерва поступают в дыхательный центр. Под их влиянием тормозится активность инспираторных нейронов продолговатого мозга. Вдох прекращается, начинается выдох, при котором рецепторы растяжения неактивны. Рефлекс торможения вдоха при растяжении легких называется рефлексом Геринга - Брейера. Этот рефлекс контролирует глубину и частоту дыхания. Он является примером регуляции по принципу обратной связи. После перерезки блуждающих нервов дыхание становится редким и глубоким.
    Ирритантные
    ​ быстро адаптирующиеся механорецепторы, локализованные в слизистой оболочке трахеи и бронхов, возбуждаются при резких изменениях объема легких, при растяжении или спадении легких, при действии на слизистую трахеи и бронхов механических или химических раздражителей. Результатом раздражения ирритантных рецепторов является частое, поверхностное дыхание, кашлевой рефлекс, или рефлекс бронхоконстрикции.

    "
    юкстакапиллярные"​ рецепторы легких находятся в интерстиции альвеол и дыхательных бронхов вблизи от капилляров. Импульсы от J-рецепторов при повышении давления в малом круге кровообращения, или увеличении объема интерстициальной жидкости в легких (отек легких), или эмболии мелких легочных сосудов, а также при действии биологически активных веществ (никотин, простагландины, гистамин) по медленным волокнам блуждающего нерва поступают в дыхательный центр
    - дыхание становится частым и поверхностным (одышка).
    Важное биологическое значение, особенно в связи с ухудшением экологических условий и загрязнением атмосферы, имеют защитные дыхательные рефлексы - чихание и кашель.
    ​Чихание​. Раздражение рецепторов слизистой оболочки полости носа, например, пылевыми частицами или газообразными наркотическими веществами, табачным дымом, водой вызывает сужение бронхов, брадикардию, снижение сердечного выброса, сужение просвета сосудов кожи и мышц. Различные механические и химические раздражения слизистой оболочки носа вызывают глубокий сильный выдох - чихание, способствующее стремлению избавиться от раздражителя. Афферентным путем этого рефлекса является тройничный нерв.
    Кашель
    ​ возникает при раздражении механо- и хеморецепторов глотки, гортани, трахеи и бронхов. При этом после вдоха сильно сокращаются мышцы выдоха, резко повышается внутригрудное и внутрилегочное давление (до 200 мм рт. ст.), открывается голосовая щель, и воздух из дыхательных путей под большим напором высвобождается наружу и удаляет раздражающий агент. Кашлевой рефлекс является основным легочным рефлексом блуждающего нерва.
    Рефлексы с проприорецепторов дыхательных мышц
    От мышечных веретен и сухожильных рецепторов Гольджи, расположенных в межреберных мышцах и мышцах живота, импульсы поступают в соответствующие сегменты спинного мозга, затем в продолговатый мозг, центры головного мозга, контролирующие состояние скелетных мышц. В результате происходит регуляция силы сокращений в зависимости от исходной длины мышц и оказываемого им сопротивления дыхательной системы.
    1   ...   6   7   8   9   10   11   12   13   14


    написать администратору сайта