Главная страница
Навигация по странице:

  • Свойства углеродных волокон

  • Характеристика

  • Исходное

  • Электрические свойства.

  • Реагенты

  • Способ подготовки поверхности углеродных волокон

  • УП Наполнители. Федеральное агентство по образованию


    Скачать 8.75 Mb.
    НазваниеФедеральное агентство по образованию
    АнкорУП Наполнители.doc
    Дата12.05.2017
    Размер8.75 Mb.
    Формат файлаdoc
    Имя файлаУП Наполнители.doc
    ТипУчебное пособие
    #7461
    страница18 из 23
    1   ...   15   16   17   18   19   20   21   22   23


    17.3 Типы и свойства углеродных волокнистых наполнителей
    В настоящее время разработано и промышленно ос­воено большое количество разнообразных и по назначению и по составу и свойствам углеродных волокон [3]. Марочный ассортимент базируется прежде всего на типе исходного волокна при получении УВ, чистоте сырья, технологии обработки исходных волокон, конечной температуре обработки (определяющей совершенство структуры УВ и его свойства), требуемой текстуре промышлен­ных форм УВ и их назначении. Ассортимент углеродных волокон довольно широк и разнообразен, что определяется типом и составом исходного сырья, его способностью претерпевать термические превращения при нагревании, условиями (режимы, среда) проведения термических превра­щений при получении углеродных волокон. На основе элементарных углерод­ных волокон получают разнообразные текстильные формы, которые и исполь­зуются в качестве углеродных волокнистых материалов (УВМ) как компоненты для получения композиционных материалов или как самостоятельные мате­риалы (изделия). Марочный ассортимент углеродных волокнистых материалов определяется прежде всего назначением и потребностью в данном виде мате­риала для изделий современной техники. Фирмы, выпускающие УВ, как правило, специа­лизируются на производстве нескольких типов углеродных волокнистых мате­риалов, но на одном виде исходного сырья. Так, например, выпуском УВМ на основе ПАН - волокна занимаются фирмы Hercules, UCC, Celanese, HITOCO, Great Lakes Carbon, Stackpole Carbon Fibers (США); Торэ, Тохо бэсоун, Нихон кабон, Асахи нихон кабон файба, Мицубиси рэён, Сумитомо кагаку (Япония). Фирма Юнион Карбайт выпускает УВМ на основе ПАН, ГЦ и пеков. УВМ на основе обычных пеков выпускают фирмы Курэха Кагаку (Япония), Courtlands (Великобритания), Serofim (Франция).
    Свойства углеродных волокон

    Свойства углепластиков зависят от свойств углеродных во­локон, которые в свою очередь определяются условиями пиролиза органических волокон (гидратцеллюлозных, полиакрилонитрильных, волокон из мезофазных пеков), используемых в настоящее время в каче­стве сырья для изготовления углеродных волокон.

    Механические свойства. Модуль упругости при растяжении (вдоль волокон) высококачественных углеродных волокон высокопрочного типа (на основе ПАН) составляет 200 -- 250 ГПа, высокомодульного типа (на основе ПАН) - около 400 ГПа, а углеродных волокон на основе жидкокристаллических пеков: 400 - 700 ГПа. При одной и той же температуре прогрева углеродные волокна на основе жидкокристал­лических пеков имеют больший модуль упругости при растяжении, чем волокна на основе ПАН [2]. Модуль упругости при растяжении поперек волокон (модуль жест­кости при изгибе) снижается с ростом модуля упругости при растяжении вдоль волокон. Для углеродных волокон на основе ПАН он выше, чем для волокон на основе жидкокристаллических пеков. На поперечный модуль упругости также влияет ориентация атомных плоскостей в сечении уг­леродного волокна. Проч­ность при растяжении вдоль оси высокопрочных углеродных волокон на основе ПАН составляет 3,0-3,5 ГПа, волокон с высоким удлинением

    4,5 ГПа и высокомодульных волокон - 2,0-2,5 ГПа. Высокотемпера­турная обработка волокон второго типа позволяет получить высокомо­дульные волокна с прочностью при растяжении приблизительно 3 ГПа. Прочность волокон на основе жидкокристаллических пеков обычно равна 2,0 ГПа. Теоретическое значение прочности при растяжении кристаллов гра­фита в направлении атомных плоскостей решетки составляет 180 ГПа. Измерен­ная экспериментально прочность при растяжении углеродных волокон вы­сокопрочного и высокомодульного типа на основе ПАН на участке дли­ной 0,1 мм равна 9-10 ГПа.. Эта величина составляет 1/20 теоре­тического значения и 1/2 прочности нитевидных монокристаллов гра­фита. Для углеродных волокон на основе жидкокристаллических пеков измеренная аналогичным образом прочность равна 7 ГПа. В таблицах 17.1, 17.2 приведены показатели механических свойств наиболее распространенных углеродных во­локон [2, 12].

    Мень­шая прочность промышленно производимых углеродных волокон связана с тем, что они не являются монокристаллами и в их микроско­пической структуре имеют место значительные отклонения от регуляр­ности. Свойства углеродных волокон можно значительно улучшить вплоть до разрушающего удлинения 2% и прочности 5 ГПа и выше [2].
    Таблица 17.1 - Механические свойства УВ [2].


    Характеристика

    УВ на основе ПАН

    УВ на основе

    жидкокри­стал­лических пеков

    высоко­прочное

    с высоким удлинением

    высоко­модульное

    Диаметр волокна, нм

    (7-8) 103

    (6-7) 103

    (6-7) 103

    1 105

    Модуль упругости при растяжении, ГПа

    230-240

    230-250

    350-450

    380-690

    Разрушающее напряже­ние при растяжении, ГПа

    3,0-3,5


    4,0-4,5


    2,0-2,5


    2,1-2,4


    Относительное удлине­ние при растяжении, %

    1,3-1,4

    1,7-1,8

    0,5-0,6




    Плотность, г/см3

    1,74-1,78

    1,74-1,78

    1,78-1,84

    2,00

    Удельная прочность, м

    173-196

    230-252

    112-136

    105-120



    Таблица 17.2 - Физико-механические свойства углеродных волокон [12].


    Исходное

    волокно

    Диаметр,

    мкм

    Плотность, г/см3

    Разрушающее напряжение при растяжении, МПа

    Модуль упругости при растяжении, Е, ГПа

    Тестильная форма

    Полиакрилонитрильное

    7-8

    1,95-2,0

    1,75-1,8

    1400-2100

    2500-3100

    380-450

    250-310

    Непрерыв-ный жгут

    Визкозное


    8-10

    1,32

    400-800

    42

    Непрерывный жгут


    6-8

    1,43

    1,56

    1,63-1,7

    1,86

    1260-1400

    1750

    2000-2200

    2300-2600

    175

    280

    350-420

    490-530


    Как видно из таблиц, УВ обладают низкой плотностью и высокими прочностью при растяжении и модулем упругости. Следовательно, углеродные волокна имеют высо­кую прочность и удельный модуль упругости. Наиболее характерной осо­бенностью углеродных волокон является их высокий удельный модуль упругости. Это позволяет с успехом использовать углеродные волокна для армирования материалов конструкционного назначения. Сравнивая высокомодульные волокна с низкомо­дульными сходного химического состава, следует от­метить, что с увеличением модуля упругости и плотности углеродных во­локон уменьшаются объем закрытых пор, средний диаметр и удельная поверхность, улучшается его электропроводность.

    Электрические свойства. Возрастание модуля упругости по мере уменьшения угла тек­стуры означает, что структура углеродного волокна приближает­ся к структуре графита, обладающего металлической проводимо­стью в направлении гексагонального слоя [1]. Углеродные во­локна, полу­ченные при температуре не ниже 1000°С, обладают высокой элект­ропроводностью (более 102 Ом-1-см-1). Варьируя модуль упругости, а следовательно, и элект­рические свойства углеродного наполнителя, можно регулировать электрические свойства композиционного материала. В процессе превращения органических волокон в УВ осуществляется пе­реход через все зоны проводимости [5]. Исходные волокна являются диэлектри­ками, в процессе карбонизации электрическое сопротивление резко снижается, затем с повышением температуры обработки выше 1000 оС оно, хотя и продолжает умень­шаться, но менее интенсивно [2]. Карбонизованные волокна по типу проводимости относятся к полупроводникам, а графитированные охватывают область от по­лупроводников до проводников, приближаясь по мере повышения температуры обработки к последним. Для углеродных волокон температурная зависимость проводимости определяется конечной температурой их обработки, а следова­тельно, концентрацией электронов и размерами кристаллитов.

    Следует отметить [1], что чем выше температура карбонизации, тем меньше температурный коэффициент электропроводности. Углеродные волокна обладают дырочной и электронной проводимостью. При повышении температурной обработки, сопровождающейся совершенствованием струк­туры и увеличением числа электронов, запретная зона проводи­мости уменьшается, поэтому возрастает электропроводность, которая для волокон, обработанных при высокой температуре, по абсолютно­му значению приближается к электропроводности проводников.

    Термические свойства. Одним из проявлений особенностей анизотропной структуры высокомодульных углеродных во­локон является отрицательный коэффициент термического линейного расширения вдоль оси волокна, по­вышающий уровень остаточных напряжений в высокомодульных волокнитах [12]. У волокна с большим модулем упругости коэффици­ент выше по абсолютной величине и в более широком интервале температур имеет отрицательное значение. Так, у углеродных во­локон, изготовленных из ПАН-волокна (рисунок 17.11), максимальное (по аб­солютной величине) значение коэффициента наблюдается при 0°С, а при повышении температуры его знак меняется на обрат­ный (при температуре выше 360°С у волокна с Е = 380 ГПа и выше 220 °С у волокна с Е = 280 ГПа. Следует отме­тить, что кривая на рисунке 3.11 хорошо совпадает с аналогичной зависимостью коэффициента термического расширения решетки пиролитического графита вдоль оси а.

    Благодаря высокой энергии связи С—С углеродного во­локна оста­ются в твердом состоянии при очень высоких температурах, при­давая композиционному материалу высокую температуростойкость. Кратковременная прочность при растяжении высокомодуль­ного волокна, содержащего 99,7 вес. % углерода, остается практи­чески неизменной в нейтральной и восстановительной средах до 2200 °С. Не изменяется она и при низких температу­рах . В окислительной среде прочность углеродного во­локна сохраняет­ся неизменной до 450°С. Поверхность волокна предохраняют от окисления кислородостойкими защитными покрытиями из туго­плавких соединении или термостойких связующих; наибольшее распространение получили пиролитические покрытия .


    Рисунок 17.11 - Зависимость коэффициента термического линейного расширения

    вдоль волокна для углеродных во­локон с модулем упругости 380 (1)

    и 280 ГПа (2) от температуры.[12].
    Химические свойства. Углеродные во­локна отличаются от других наполнителей химической инертностью [12]. Химическая стойкость углеродных во­локон зависит от температу­ры конечной обработки, структуры и поверхности волокна, типа и чистоты ис­ходного сырья. После выдержки в течение 257 суток в агрессивных жидкостях высокомодульных волокон, полученных из ПАН-волокна, при комнатной температуре заметное снижение прочности при растяжении наблюдается лишь при действии ортофосфорной, азотной и серной кислот (таблица 17.3).
    Таблица 17.3 - Химическая стойкость в агрессивных средах высокомодульного УВ на основе ПАН (продолжительность воздействия 257 суток) [5].

    Реагенты

    Температу­ра, °С

    Диаметр

    волокна, нм

    σр,

    МПа

    Ер,

    ГПа

    Контрольный образец волокна

    -

    6,2

    2144

    404

    Кислота (50 %-ная):













    Соляная

    50

    5,9

    1882

    414

    Серная

    50

    6,3

    1538

    404

    Азотная

    50

    6,8

    1469

    338

    Угольная

    20

    6,1

    1848

    421

    Ортофосфорная

    50

    6,5

    1710

    421

    Уксусная ледяная

    -

    6,1

    1965

    434

    Раствор гидрооксида натрия,

    50 %-ный

    50

    6,5

    1772

    365


    Модуль упругости образцов изменяется только под влиянием 50%-ного раствора азотной кислоты. Проч­ность стеклянного волокна щелочного состава после выдержки в течение 240 ч в 5%-ных растворах серной или азотной кислот уменьшается на 41 и 39 % соответственно. При повышении тем­пературы стойкость углеродного волокна к агрессивным средам уменьшается.

    Особенно легко оно окисляется в растворах азотной кислоты. Раствор гидрохлори­да натрия окисляет углерод, вследствие чего уменьшается диаметр волокна, а его механические свойства даже несколько улучшаются [1].

    По степени активности по отношению к высокомодуль­ному углеродному во­локну, полученному из ПАН-волокна, кислоты мож­но расположить в следующий ряд: НNО32S04зР04>НС1. Уксусная и муравьиная кислоты и растворы щелочей любых концентраций и при любой температуре не разрушают углеродные волокна [12]. Химическая стойкость углеродных во­локон обеспечивает стабильность свойств композици­онных материалов на их основе [5].
    Дефекты и смачивание. Пиролиз органических волокон сопровождается увеличением их пористости [4]. Высокомодульные углеродные во­локна имеют поры вытяну­той формы, отличаются от низкомодульных ориентацией бороздок и трещин вдоль оси волокна и их меньшей концентрацией на по­верхности. По-видимому [12], при вытяжке происходит сглаживание части поверхностных дефектов, особенно эффективное при высо­котемпературной обработке волокон. Поры на поверхности углеродных во­локон имеют разные размеры. Крупные поры диаметром несколько сотен ангстрем при формовании композиционного мате­риала заполняются связующим, при этом прочность сцепления свя­зующего с наполнителем повышается. Большая часть пор на по­верхности волокон имеет диаметр несколько десятков ангстрем. В столь малые полости могут проникать только низкомолекуляр­ные компоненты связующего, и у поверхности наполнителя проис­ходит молекулярно-ситовое перераспределение связующего, изме­няющее его состав.

    Смачиваемость волокон применяемыми для получения углепластиков, связующими, оказывает большое влияние на их свойства. В отличие от стеклянных волокон поверхностная энергия углеродных во­локон очень низка, поэтому волокна плохо смачиваются связующими, а углепластики характеризуются низкой прочностью сцепления между наполнителем и связующим. Прочность сцепления волокон со связующим возрастает, если на поверхность волокон предварительно наносят тонкий слой мономера, хорошо смачивающего ее и заполняющего все поры. В результате полимеризации мономера волокно покрывается тонким слоем полимера — протектора, “пломбирующего” его поверхностные дефекты. Затем наполнитель совмещают с выбранным связующим, формуют изделие и отверждают пластик по стандартному режиму.

    В настоящее время предложено еще несколько способов повышения прочности сцепления углеродного во­локна со связующим, эффективность которых оценивают по возрастанию прочности композиционного материала при сдвиге [4]:

    - снятие пленки замасливателя с поверхности углеродных во­локон после окончания текстильной переработки;

    - травление поверхности углеродных во­локон окислителями;

    - аппретирование углеродных во­локон;

    - выращивание на поверхности волокон нитевидных кристаллов, обладающих высоким сопротивлением срезу (ворсеризация или вискеризация).

    В некоторых случаях применяют последовательно несколько способов обработки.

    Ворсеризация высокомодульных углеродных волокон является наиболее радикальным методом повышения прочности при сдвиге углепластиков. Пропорционально объемному со­держанию нитевидных кристаллов на волокне увеличивается не только прочность при сдвиге, но и прочность при сжатии и изгибе в поперечном направлении вследствие дополнительного упрочнения матрицы кристаллами, обладающими вы­сокими механическими показателями (например, прочность ните­видных кристаллов ?-SiC составляет 7—20 ГПа при мо­дуле упругости около 50 ГПа). При высоком содержании нитевидных кристаллов на волокне (более 4—7%) прочностные и упругие свойства пластика ухудшаются. В ряде случаев снижение прочности пластика связано с потерей прочности углеродного волокна при ворсеризации. В таблице 17.4 показано, как зависят свойства углепластиков от способа подготовки поверхности углеродного волокна.
    Таблица 17.4 - Влияние различных видов подготовки поверхности высокомодульного волокна на свойства однонаправленного эпоксидного углепластика [12].


    Способ подготовки поверхности углеродных волокон

    Плотность, г/см3

    Разрушающее напряжение, МПа, при

    Модуль упругости, ГПа







    сдвиге

    изгибе




    Волокно с замасливателем

    1,44

    24

    640

    169

    Травление в HNO3

    1,45

    42

    550

    158

    Выжигание замасливателя в азоте и пропитка эпоксидной смолой


    1,45


    45


    630


    167

    Ворсеризация

    нитевидными кристаллами карбида кремния


    1,46


    95


    590


    140


    Способность углеродных во­локон, содержащих одинаковое количество углерода (не менее 99 вес.%), к ворсеризации из газовой фазы возрастает с уменьшением стойкости его к окислению, которая пропорциональна концентрации поверхностных дефектов [12].
    1   ...   15   16   17   18   19   20   21   22   23


    написать администратору сайта