Физиология нервов, синапсов, мышц и рецепторов
Скачать 23.71 Mb.
|
Промежуточный мозг: структуры и их функции. Пирамидная и экстрапирамидная системы: главные структуры функции. Стриопалидарная система, и ее функции. Промежуточный мозг расположен между средним и конечным мозгом. Он состоит из таламической области и гипоталамуса. Таламическая область охватывает ядра таламуса, включая коленчатые тела и подушки, и эпиталамус (эпифиз). Таламус (зрительный бугор) представляет собой парный ядерный комплекс, включающий до 60 ядер, в котором выделяют три главные группы ядер: релейные (специфические, переключательные), ассоциативные и неспецифические. Все группы ядер обладают в разной степени тремя общими функциями: переключающей, интегративной и модилирующей. Релейные ядра разделяют на сенсорные и несенсорные. Сенсорные переключают потоки афферентной импульсации в сенсорные зоны коры. В них также происходит перекодирование и обработка инфы. Выделяют три основные ядерные структуры. Вентральные задние ядра (вентробазальный комплекс) – главное реле для переключения соматосенсорной афферентной системы, импульсы которой поступают по волокнам медиальной, спинно – мозговой и тройничной петлям. В них переключаются проприоцептивная, тактильная, вкусовая, висцеральная, частично температурная и болевая чувствительность. В этих ядрах имеется топографическая проекция периферии; при этом функционально более тонко организованные части тела имеют большую зону представительства. Импульсация из вентральных задних ядер проецируется в соматосенсорную кору постцентральной извилины, где формируются соответствующие ощущения. Электростимуляция вентральных задних ядер вызывает парестезии (ложные ощущения) в разных частях тела, иногда нарушение схемы тела. Латеральное коленчатое тело является реле для переключения зрительной импульсации в затылочную кору, где она используется для формирования зрительных ощущений. Медиальное коленчатое тело является реле для переключения слуховой и, возможно, вестибулярной импульсации в височную кору. Переключательную функцию в сенсорных ядрах обеспечивают таламокортикальные (релейные) нейроны, длинный аксон которых непосредственно иннервируют нейроны сенсорной коры. Регуляция этой передачи осуществляется с помощью тормозных и возбуждающих интернейронов ядер. Несенсорные релейные ядра таламуса (передние и вентральные) переключают в кору несенсорную импульсацию, поступающую в таламус из разных отделов головного мозга. В передние ядра импульсация в основном поступает из мамиллярных тел гипоталамуса. Нейроны передних ядер проецируются в лимбическую кору. От нее аксонные связи идут к гиппокампу и опять к гипоталамусу, в результате чего образуется нейронный круг, движение возбуждения по которому обеспечивает формирование эмоций. Вентральные ядра участвуют в регуляции движения, выполняя таким образом моторную функцию (вход в моторную кору). В них переключается импульсация от базальных ядер, зубчатого ядра мозжечка, красного ядра среднего мозга. После этого она проецируется в моторную и премоторную кору. Через эти ядра происходит передача в кору сложных двигательных программ, образованных в мозжечке и базальных ядрах. Ассоциативные ядра таламуса принимают импульсацию не от проводниковых путей сенсорных систем, а от других ядер таламуса. Эфферентные импульсы от этих ядер направляются в ассоциативные поля коры. Кора мозга посылает волокна к ассоциативным ядрам, регулируя их функции. Главной из них является интегративная функция, которая выражается в объединении деятельности как таламических ядер, так и различных зон ассоциативной коры полушарий мозга. Подушка получает главные входы от коленчатых тел и неспецифических ядер таламуса. Эфферентные импульсы идут от нее в височно – теменно – затылочные зоны коры, участвующих в гностических, речевых и зрительных функциях, а также в восприятии схемы тела. Медиодорсальное ядро получает входы от гипоталамуса, миндалины, гиппокампа, таламических ядер, центрального серого вещества ствола. Проекция этого ядра распространяется на ассоциативную, лимбическую и лобную кору. Оно участвует в формировании эмоциональной и поведенческой двигательной активности, а также в запоминании. Латеральные ядра получают зрительную и слуховую импульсацию от коленчатых тел и соматосенсорную импульсацию от вентрального ядра. Интегрированная сенсорная инфа от этих источников далее проецируется в ассоциативную теменную кору и используется в функциях гнозиса, праксиса, формировании схемы тела. Неспецифические ядра таламуса – более древчяя область, включающая интраламинарную ядерную группу и ретикулярное ядро. Неспецифические ядра имеют многочисленные входы от других ядер таламуса и внеталамические – эти пути проводят преимущественно болевую и температурную чувствительность. В неспецифические ядра поступает непосредственно или через РФ также часть импульсации по коллатералям от всех специфических сенсорных систем. В неспецифические ядра поступает импульсация из моторных центров ствола (красное ядро, черное вещество), ядер мозжечка, от базальных ядер и гиппокампа, а также от коры большого мозга, особенно лобных долей. Неспецифичные ядра имеют эфферентные выходы на другие таламические ядра, кору больших полушарий, а также нисходящие пути к другим структурам ствола мозга. Неспецифические ядра вызывают локальную активацию коры больших полушарий в соответствии с корковой проекцией воспринимаемых сенсорных сигналов. Неспецифические ядра таламуса выступают в роли интегрирующего посредника между стволом мозга и мозжечком, с одной стороны, и новой корой, лимбической системой и базальными ядрами с другой, объединяя их в единый функциональный комплекс. На кору большого мозга неспецифический таламус оказывает моделирующее влияние. Гипоталамус включает преоптическую область и область перекреста зрительных нервов, серый бугор и воронку, сосцевидные (мамиллярные тела). В гипоталамусе выделяют 15 – 48 парных ядер, которые разделяют на 3 – 5 групп. Обычно выделяют три основные группы: 1. Передняя группа содержит медиальное преоптическое, супрахиазматическое, перавентрикулярное и переднее гипоталамические ядра; 2) средняя группа включает дорсомедиальное, вентромедиальное, аркуатное (дугообразное) и латеральное гипоталамические ядра; 3. Задняя группа включает супрамамиллярное, премамиллярное, мамиллярные ядра, заднее гипоталамическое и перифорниатное ядра, субталамическое ядро Луиса. Главные афферентные пути в гипоталамус идут от лимбической степени, коры больших полушарий, базальных ядер и РФ ствола. Основные эфферентные пути гипоталамуса идут в ствол мозга – его РФ, моторные и вегетативные центры, в вегетативные центры спинного мозга, от мамиллярных тел к передним ядрам таламуса и далее в лимбическую систему, от супраоптическрого и паравентрикулярного ядер к нейогипофизу, от вентромедиального и аркуатного ядер к аденогипофизу, а также эфферентные выходы к лобной коре и полосатому телу. Гипоталамус – важнейший центр интеграции вегетативных, регуляции эндокринной системы, терморегуляции, цикла бодрствование – сон и других суточных биоритмов. Велика его роль в организации поведения, направленного на реализацию биологических потребностей. Пирамидная система, пирамидный путь, система нервных структур, участвующих в сложной и тонкой координации двигательных актов. У низших позвоночных П. с. нет, она появляется только у млекопитающих, образуя эфферентную часть двигательного анализатора и достигает наибольшего развития у человека. Пирамидный путь начинается преимущественно от пирамидных нейронов сенсомоторной области коры головного мозга. Их длинные отростки (волокна) образуют прямые нисходящие пути к рефлекторным двигательным центрам спинного мозга, по которым осуществляется передача корковой информации. Волокна П. с. спускаются в спинной мозг, не прерываясь; по пути дают ответвления (коллатерали) к ядрам черепных нервов и перекрещиваются (большая часть в продолговатом мозге, меньшая в спинном), переходя на противоположную сторону; далее они проходят в составе передних и боковых столбов спинного мозга, образуя синаптические окончания в каждом его сегменте, передавая импульсы от коры головного мозга его двигательным нейронам непосредственно либо через вставочные нейроны. В составе П. с. человека около 1 млн. нервных волокон. Они делятся в основном на толстые, быстропроводящие (диаметром около 16 мкм, скорость проведения до 80 м/сек) — обеспечивают быстрые фазные движения, и тонкие, медленнопроводящие (диаметром около 4 мкм, скорость проведения от 25 до 7 м/сек), ответственные за тоническое состояние мышц. Повреждения П. с. проявляются параличами, парезами, патологическими рефлексами. Экстрапирамидная система — совокупность структур головного мозга, участвующих в управлении движениями, поддержании мышечного тонуса и позы, минуя пирамидную систему. Структура расположена в больших полушариях и стволе головного мозга. Экстрапирамидные проводящие пути образованы нисходящими проекционными нервными волокнами, по происхождению не относящимися к гигантским пирамидным клеткам (клеткам Беца) коры больших полушарий мозга. Эти нервные волокна обеспечивают связи мотонейронов подкорковых структур (мозжечок, базальные ядра, ствол мозга) головного мозга со всеми отделами нервной системы, расположенными дистальнее. Экстрапирамидная система состоит из следующих структур головного мозга: базальные ганглии красное ядро чёрная субстанция РФ моста и продолговатого мозга ядра вестибулярного комплекса мозжечок премоторная область коры полосатое тело Экстрапирамидная система осуществляет непроизвольную регуляции и координацию движений, регуляцию мышечного тонуса, поддержание позы, организацию двигательных проявлений эмоций (смех, плач). Обеспечивает плавность движений, устанавливает исходную позу для их выполнения. При поражении экстрапирамидной системы нарушаются двигательные функции (например, могут возникнуть гиперкинезы, паркинсонизм), снижается мышечный тонус. Экстрапирамидная система объединяет двигательные центры коры головного мозга, его ядра и проводящие пути, которые не проходят через пирамиды продолговатого мозга; осуществляет регуляцию непроизвольных компонентов моторики (мышечного тонуса, координации движений, позы). Следующее звени экстрапирамидных путей составляют ретикулярно-спинномозговой, красноядерно-спинномозговой, преддверно-спинномозговой и оливоспинномозговой пути, оканчивающиеся в передних столбах и промежуточном сером веществе спинного мозга. Мозжечок включается в экстрапирамидную систему посредством путей, соединяющих его с таламусом, красным ядром и оливными ядрами. Функционально экстрапирамидная система неотделима от пирамидной системы. Она обеспечивает упорядоченный ход произвольных движений, регулируемых пирамидной системой; регулирует врожденные и приобретенные автоматические двигательные акты, обеспечивает установку мышечного тонуса и поддержание равновесия тела; регулирует сопутствующие движения (например движения рук при ходьбе) и выразительные движения (мимика). В толще белого вещества полушарий мозга располагаются скопления серого вещества, называемые подкорковыми ядрами (базальные ядра). К ним относятся хвостатое ядро, чечевицеобразное ядро, ограда и миндалевидное тело (рис. 6). Чечевицеобразное ядро, находящееся снаружи от хвостатого ядра, делится на три части. В нем различают скорлупу и два бледных шара. В функциональном отношении хвостатое ядро и скорлупа объединяются в полосатое тело (стриатум), а бледные шары вместе с черной субстанцией и красными ядрами, расположенными в ножках мозга, – в бледное тело (паллидум). Вместе они представляют очень важное в функциональном отношении образование – стриоппаллидарную систему. Стриопаллидарная система является важной составной частью двигательной системы. Она входит в состав так называемой пирамидной системы. В двигательной зоне коры головного мозга начинается двигательный – пирамидный – путь, по которому следует приказ выполнить то или иное движение. Экстрапирамидная система, важной составной частью которой является стриопаллидум, включаясь в двигательную пирамидную систему, принимает подсобное участие в обеспечении произвольных движений. Главным двигательным центром стала кора головного мозга. Стриопаллидарная система стала обеспечивать фон, готовность к совершению движения; на этом фоне осуществляются контролируемые корой головного мозга быстрые, точные, строго дифференцированные движения. Для совершения движения необходимо, чтобы одни мышцы сократились, а другие расслабились, иначе говоря, нужно точное и согласованное перераспределение мышечного тонуса. Такое перераспределение тонуса мышц как раз и осуществляется стриопаллидарной системой. Эта система обеспечивает наиболее экономное потребление мышечной энергии в процессе выполнения движения. Совершенствование движения в процессе обучения их выполнению (например, отработка до предела отточенного бега пальцев музыканта, взмаха руки косаря, точных движений водителя автомобиля) приводит к постепенной экономизации и автоматизации. Такая возможность обеспечивается стриопаллидарной системой.
Лимбическая система – совокупность структур промежуточного, конечного и среднего мозга, обеспечивающая эмоционально – мотивационные компоненты поведения и интеграцию висцеральных функций организма. В лимбическую систему включают образования обонятельного мозга – обонятельная луковица и бугорок, гиппокамп, парагиппокампальную, зубчатую и поясную извилины; подкорковые ядра – амигдалу, ядра перегородки; мамиллярные тела гипоталамуса, передние ядра таламуса. Афферентные входы в лимб систему осуществляются от различных областей головного мозга, а также через гипоталамус от РФ ствола, которая считается главным источником ее возбуждения. Важным стимулирующим афферентным входом являются импульсы от обонятельных рецепторов по волокнам обонятельного нерва, поступающие в различные структуры лимбической системы. Эфферентные выходы осуществляются через гипоталамус на нижележащие вегетативные и соматические центры ствола и спинного мозга. Другой эфферентный выход проводит возбуждение из лимбической системы в новую кору. Через нее лимбическая система включается в регуляцию высших психических функций. Кольцевые нейронные связи объединяют различные структуры лимбической системы и дают возможность длительной циркуляции возбуждения, которая является механизмом его пролонгирования, повышения проводимости синапсов и запоминания инфы. Реверберация создает условия для сохранения единого функционального состояния структур замкнутого круга и навязывания этого состояния другим структурам мозга. Важнейшим циклическим образованием лимбической системы является круг Пейпеца, идущий от гиппокампа через свод к мамилярным телам, от них к передним ядрам таламуса, от него в поясную извилину и от нее через парагиппокампову извилину обратно к гиппокампу. Этот круг имеет большое значение в формировании эмоций, обучении и памяти. Другой круг (от миндалины к мамилярным телам, от них к лимбической области среднего мозга и обратно к амигдале) имеет огромное значение в формировании агрессивно – оборонительных, пищевых и сексуальных реакций. Функции лимбической системы. Получая инфу о внешней среде и внутренней среде организма, лимбическая система после сравнения и обработки этой инфы запускает вегетативные реакции и вместе с ассоциативной корой инициирует поведенческие реакции, обеспечивающие адекватное приспособление организма к окружающей среде и сохранению гомеостазиса. Регуляция висцеральных функций осуществляется преимущественно через гипоталамус. При раздражении лимбической системы повышаются или снижаются секреция различных гормонов аденогипофизом (АКТГ и гонадотропинов), ЧСС, моторика и секреция желудка и кишечника. В лимбической системе происходит формирование эмоций. Важную роль в этом процессе имеют амигдала и поясная извилина. Электрическая стимуляция амигдалы вызывает отрицательные эмоции - страх, гнев, ярость. Удаление амигдалы приводит к уменьшению агрессивности, повышает тревожность. Нарушается способность оценивать инфу, поступающую из окружающей среды и связывать ее со свои эмоциональным состоянием. Амигдала участвует в процессе сравнивания конкурирующих эмоций, выделения доминирующих эмоций, влияет на выбор поведения. Амигдала участвует в однократном обучении благодаря свойству индуцировать сильные отрицательные эмоции, что способствует быстрому и прочному формированию временной связи. Поясная извилина, имеющая многочисленные связи с новой корой и стволовыми центрами, выполняет роль интегратора различных структур мозга, участвующих в формировании эмоций. Роль лимбической системы в системе обучения связана с лимбическим кругом Пейпеца. Главную роль играют гиппокамп и связанные с ним задние зоны лобной коры. Их деятельность необходима для консолидации памяти – перехода кратковременной памяти в долговременную. Повреждение гиппокампа ведет к резкому нарушению усвоения новой инфы, образования промежуточной и долговременно памяти. Электрофизиологической особенность. Гиппокампа является то, что в ответ на раздражение, стимуляцию РФ и заднего гипоталамуса в нем развивается синхронизация электрической активности в виде тета – ритма. При этом в новой коре возникает десинхронизация виде бета – ритма. Другая особенность - способность на стимуляцию отвечать длительным увеличением амплитуды возбуждающих постсинаптических потенциалов, что приводит к синаптической потенциации и запоминанию инфы. При этом на дендритах пирамидных нейронов гиппокампа увеличивается число шипиков, что свидетельствует об усилении синаптической передачи возбуждающих и тормозных влияний через аксоношипиковые синапсы. Сенсорная функция. В лимбической системе находится корковый отдел системы обоняния (парагиппокампальная извилина, крючок, гиппокамп). Ее главный афферентный выход через свод, мамиллярные тела, передние ядра гипоталамуса на другие структуры лимбической системы и далее на висцеральные органы объясняет наличие резко выраженного эмоционального компонента в обонятельном восприятии и возможность лечебного воздействия пахучих веществ. |