Главная страница
Навигация по странице:

  • При анализирующем скрещивании расщепление по фенотипу совпадает с расщеплением по генотипу

  • Сцепление генов

  • Сцепление генов

  • Сцепления генов

  • Биология. Итог по генетике. Генетика как наука. Предмет и задачи генетики. Наследственность и изменчивость (определение). Основные этапы развития генетики, их краткая характеристика. Роль генетики в современной биологии и медицине


    Скачать 1.66 Mb.
    НазваниеГенетика как наука. Предмет и задачи генетики. Наследственность и изменчивость (определение). Основные этапы развития генетики, их краткая характеристика. Роль генетики в современной биологии и медицине
    АнкорБиология. Итог по генетике
    Дата06.11.2021
    Размер1.66 Mb.
    Формат файлаdocx
    Имя файлаbio_itog_2.docx
    ТипЗакон
    #264313
    страница2 из 13
    1   2   3   4   5   6   7   8   9   ...   13

    Закономерности наследования. Гибридологический анализ – основной метод генетики. Условия менделирования признаков. Неполное доминирование (пример). Анализирующее скрещивание (пример). Сверхдоминирование (пример).

    Закономерности наследования были сформулированы в 1865г Грегори Менделем в работе "Опыты над растительными гибридами". В своих экспериментах он проводил скрещивание различных сортов гороха (Чехия / Австро-Венгрия). В 1900г закономерности наследования переоткрыты Корренсем, Чермаком и Гого де Фризом.

    Первый и второй законы Менделя основаны на моногибридном скрещивании, а третий - на ди и полигибридном. Моногибридное скрещивание идет по одной паре альтернативных признаков, дигибридное по двум парам, полигибридное - более двух. Успех Менделя обусловлен особенностями примененного гибридологического метода:

    - анализ начинается со скрещивания чистых линий: гомозиготных особей.

    - анализируются отдельные альтернативные взаимоисключающие признаки.

    - точный количественный учет потомков с различной комбинацией признаков

    - наследование анализированных признаков прослеживается в ряду поколений.

    Правило выписывания гамет по формуле 2n, где n - количество гетерозигот: для моногибридов - 2 сорта гамет, для дигибридов - 4, для тригибридов - 8.

    Основу генетического анализа составляет гибридологический анализ, основанный на анализе наследования признаков при скрещиваниях.

    Гибридологический анализ, основы которого разработал основатель современной генетики Г. Мендель, основан на следующих принципах.

    1. Использование в качестве исходных особей (родителей), форм, не дающих расщепления при скрещивании, т.е. константных форм.

    2. Анализ наследования отдельных пар альтернативных признаков, то есть признаков, представленных двумя взаимоисключающими вариантами.

    3. Количественный учет форм, выщепляющихся в ходе последовательных скрещиваний и использование математических методов при обработке результатов.

    4. Индивидуальный анализ потомства от каждой родительской особи.

    5. На основании результатов скрещивания составляется и анализируется схема скрещиваний

    Однако в некоторых случаях метод прямого гибридологического анализа оказывается неприменим. Например, при изучении наследования признаков у человека необходимо учитывать ряд обстоятельств: невозможность планирования скрещиваний, низкая плодовитость, длительный период полового созревания. Поэтому кроме гибридологического анализа, в генетике используется множество других методов.

    Гибридологический анализ, способ изучения наследственных свойств организма путём скрещивания (гибридизации) его с родственной формой и последующим анализом признаков потомства. Г. а. впервые применил Г. Мендель (1865) для изучения механизма передачи наследственных задатков (генов) от родителей потомкам и для изучения взаимодействия генов у одного и того же организма. В основе Г. а. лежит способность к рекомбинации, т. е. перераспределению генов при образовании гамет, что приводит к возникновению новых сочетаний генов. По этим сочетаниям, которые проявляются в потомстве гибридной особи с определённой частотой, можно судить о генотиперодительской формы, а по генотипу родительской формы можно предсказывать генотип потомства.

    Если самооплодотворения нет, генотип исходной формы выявляют, скрещивая в разных комбинациях её потомков ("брат ´ сестра") и анализируя "внучатое" поколение. Др. способ выявления гибридного состояния - анализирующее скрещивание: скрещивание предполагаемого гибрида с рецессивной родительской формой. Г. а. играет важную роль в селекционной практике и племенном деле, т.к. позволяет судить о тождестве фенотипа и генотипа. Здесь Г. а. находит применение в форме "анализа производителей по потомству" с целью выявления у производителей скрытых нежелательных генов. Г. а. применяется также при составлении хромосомных карт. Знание генного состава хромосомы позволяет путём специальных скрещиваний вводить в геном определённую хромосому или группу генов и создавать формы с нужным генотипом. Этот метод широко применяется в растениеводстве. Г. а. пользуются при изучении взаимодействия генов в первом гибридном поколении (тесты на комплементацию). Г. а. является главным методом генетического анализа.

    Менделирование— распределение генов в потомстве в соответствии с законами Менделя.

    Условия менделирования:

    - в наборе хромосом есть парные гомологичные хромосомы

    - расхождение гомологичных хромосом в анафазу мейоза I идет независимо

    - при оплодотворении сочетание гамет происходит случайно

    - разные гены находятся в разных хромосомах

    - 1 ген контролирует 1 признак (моногенность)

    - признаки качественные, не количественные

    Неполное доминирование. Доминантный ген в гетерозиготном состоянии не всегда полностью подавляет рецессивный ген. В ряде случаев гибрид fi не воспро­изводит полностью ни одного из родительских призна­ков и признак носит промежуточный характер с боль­шим или меньшим уклонением к доминантному или ре­цессивному состоянию. Но все особи этого поколения единообразны по данному признаку. Так, при скрещи­вании ночной красавицы с красной окраской цветков (АА) с растением, имеющим белые цветки (аа), в fi об­разуется промежуточная розовая окраска цветка (Аа). При неполном доминировании в потомстве гибридов (Fi) расщепление по генотипу и фенотипу совпадает (1:2:1).

    Неполное доминирование — широко распространен­ное явление. Оно обнаружено при изучении наследова­ния окраски цветка у львиного зева, окраски шерсти у крупного рогатого скота и овец, биохимических при­знаков у человека и т. д.

    У андалузских кур бывает черная и белая окраска перьев, а их гибри­ды имеют голубую окраску. При скрещивании крупного рогатого скота красной масти с белыми животными гибриды получаются чалой масти, т. е. у них часть волос белых, а часть красных, перемешанных более или менее равномерно.

    Свойством неполного доминировании обладает ряд генов, вызывающих наследственные аномалии и болезни человека. Так, например, наследу­ется серповидноклеточная анемия (о ней подробнее будет сказано ниже) и атаксия Фредрейха, характеризуемая прогрессирующей потерей коор­динации произвольных движений.

    Анализирующее скрещивание используется для выяснения неизвестного генотипа одного из родителей. Генотип может быть неизвестен, когда по фенотипу нельзя сделать однозначный вывод о породившем его генотипе. Например, при полном доминировании экземпляры с генотипами AA и Aa имеют одинаковый фенотип.

    В качестве второго родителя при анализирующем скрещивании выступает так называемый анализатор – особь с исключительно рецессивными аллелями по исследуемым генам. Он образует гаметы только одного типа. На фоне рецессивных аллелей становятся «видны» аллели первого родителя.

    При анализирующем скрещивании расщепление по фенотипу совпадает с расщеплением по генотипу, что позволяет сделать вывод о генотипе исследуемого родителя.

    Например, имеется особь с доминантным фенотипом и неизвестным генотипом: A- (вместо знака "-" может быть аллель a или A). При скрещивании с рецессивным экземпляром aa возможны два случая:

    • Все гибриды первого поколения (F1) будут иметь доминантный фенотип. В этом случае исследуемый экземпляр имел генотип AA, так как он образует гаметы одного типа – с доминантным аллелем. При сочетании с рецессивным аллелем анализатора образуются только генотипы Aa.

    • Половина F1 будет иметь доминантный признак, половина – рецессивный. В этом случае генотип родителя Aa, так как он образует гаметы двух типов в равных количествах – с аллелем A и аллелем a. При сочетании с рецессивным аллелем анализатора образуются генотипы Aa и aa, имеющие разный фенотип.

    При дигибридном анализирующем скрещивании зачастую можно сделать вывод не только о генотипе родителя, но и о сцеплении генов. Например, имеется особь доминантная по двум признакам: A-B-. Ее генотип может быть AABB, AaBB, AABb, AaBb.

    В случае генотипа AABB все потомки от анализирующего скрещивания будут иметь генотип AaBb и такой же как у исследуемого родителя фенотип. Сделать вывод о сцепленности генов A и B, т. е. локализации их в одной хромосоме, нельзя.

    Генотип AaBB образует гаметы AB и aB в равных количествах. При сочетании с гаметами ab анализатора образуются в равных соотношениях генотипы AaBb и aaBb, имеющие разный фенотип по первому гену, а значит исследуемый родитель был по нему гетерозиготой, в то время как по первому – доминантной гомозиготой. Здесь также нельзя сделать вывод о сцеплении генов.

    В случае AABb генотипы F1 будут AaBb и Aabb. Случай аналогичен предыдущему, за исключением того, что исследуемый организм был гетерозиготен по второму признаку.

    Если же генотип исследуемой особи AaBb, то при отсутствии сцепления она образует четыре типа гамет AB, aB, Ab, ab в равных количествах, что при анализирующем скрещивании даст четыре генотипа AaBb, aaBb, Aabb, aabb. У всех четырех фенотипы будут разные и соотношение между ними будет 1 : 1 : 1 : 1.

    Однако, если, например, аллели A и B сцеплены между собой в одной хромосоме, а аллели a и b в другой, то образуются гаметы только двух типов AB и ab. Половина F1 будет AaBb, вторая половина – aabb.

    На самом деле такое полное сцепление редкость. Из-за того, что при мейозе протекает кроссинговер и гомологичные хромосомы обмениваются участками, какой-то процент гамет будет содержать рекомбинантные хромосомы Ab и aB. Однако их будет меньше, чем «нормальных». В результате даже при сцеплении генов образуются четыре фенотипа, но их соотношение далеко не 1 : 1 : 1 : 1. Генотипов AaBb и aabb будет больше, рекомбинантных Aabb и aaBb – меньше.

    Сцепленными могут оказаться аллели A и b, в то время как аллель a будет сцеплена с B. В этом случае, если не учитывать кроссинговер, образуются гаметы Ab и aB. Результатом анализирующего скрещивания будут генотипы Aabb и aaBb.

    С учетом кроссинговера этих генотипов будет больше, меньше будет AaBb и aabb.

    Таким образом, по наблюдаемым результатам анализирующего скрещивания можно сделать вывод о генотипе исследуемого родителя, а также о наличии определенных групп сцепления генов.

    Сверхдоминирование — это явление преимущества класса гетерозигот по сравнению с возможными, для данного гена и аллелей, классами гомозигот.

    Фенотипически, как правило, в случае сверхдоминирования гетерозиготы не обладают особыми внешними признаками. Преимущество связано с биохимическими особенностями.

    Один из характерных примеров сверхдоминирвания является повышенная частота аллеля гена серповидноклеточной анемии в популяциях человека, живущих в условиях высокой вероятности заражения малярией. Мутантный аллель защищает организм от заболевания малярией. Гомозиготы по нормальному аллелю могут заболеть малярией и погибнуть, гомозиготы по мутантному аллелю - с высокой вероятностью гибнут от анемии. Гетрозиготы по этому гену не болеют серповидновлеточной анемией и устойчивы к малярии.

    1. Хромосомная теория наследственности (Т. Морган). Линейное расположение генов в хромосомах. Хромосомы как группы сцепления генов. Генетические и цитологические карты хромосом. Основные положения хромосомной теории.

    Первоначальные положения:

    1. Гены локализуются в хромосоме в линейной последовательности. Каждый ген занимает определённое место – локус.

    2. Гены, локализованные в одной хромосоме наследуются совместно, образуя группу сцепления. Число групп сцепления равно гаплоидному на- бору хромосом.

    3. Сила сцепления генов в хромосоме зависит от расстояния между ними. Чем ближе расположены гены друг к другу, тем сильнее сила их сцепления.

    4. Сцепление генов может нарушаться процессом кроссинговера, в результате которого образуются рекомбинантные хромосомы. Чем сильнее сцеплены гены, тем меньше величина кроссинговера.

    5. Сцепление генов и их рекомбинация в результате кроссинговера – это закономерные биологические явления, в которых выражается единство наследственности и изменчивости как свойство живого.

    В 1902-1903 годах У. Саттон и Т. Бовери независимо друг от друга выявили параллелизм в поведении менделевских факторов наследственности (генов) и хромосом. Эти наблюдения послужили основой для предположения, что гены расположены в хромосомах.

    Т. Морган предположил, что гены расположены в хромосомах линейно, а частота кроссинговера отражает относительное расстояние между ними: чем чаще осуществляется кроссинговер, тем далее отстоят гены друг от друга в хромосоме; чем реже кроссинговер, тем они ближе друг к другу.

    Одним из классических опытов Моргана на дрозофиле, доказывающим линейное расположение генов, был следующий. Самки, гетерозиготные по трем сцепленным рецессивным генам, определяющим желтую окраску тела y, белый цвет глаз w и вильчатые крылья bi, были скрещены с самцами, гомозиготными по этим трем генам. В потомстве было получено 1,2% мух кроссоверных, возникших от перекреста между генами у и w; 3,5% − от кроссинговера между генами w и bi и 4,7% — между у и bi.

    Из этих данных с очевидностью вытекает, что процент перекреста является функцией расстояния между генами. Поскольку расстояние между крайними генами у и bi равно сумме двух расстояний между у и w, w и bi, следует предположить, что гены расположены в хромосоме последовательно, т.е. линейно.

    Воспроизводимость этих результатов в повторных опытах указывает на то, что местоположение генов в хромосоме строго фиксировано, т. е. каждый ген занимает в хромосоме свое определенное место — локус.

    Основным положениям хромосомной теории наследственности — парности аллелей, их редукции в мейозе и линейному расположению генов в хромосоме — соответствует однонитчатая модель хромосомы.

    Гены, локализованные в одной хромосоме, называются группой сцепления.

    Сцепление генов, совместная передача двух или более генов от родителей потомкам. Объясняется тем, что эти гены лежат в одной хромосоме, то есть принадлежат одной группе сцепления и поэтому не могут случайно перекомбинироваться в мейозе, как это бывает при наследовании генов, лежащих в разных хромосомах. Сцепление генов было открыто в 1906 английскими генетиками У. Бэтсоном и Р. Пеннетом, обнаружившими в опытах по скрещиванию растений у некоторых генов тенденцию передаваться совместно и тем самым нарушать закон независимого комбинирования признаковПравильное объяснение этому дали Т. Морган и сотрудники, обнаружившие аналогичное явление при изучении наследования признаков у дрозофилы.
    Мерой Сцепление генов служит частота образования гетерозиготой по этим генам кроссоверных гамет или спор, в которых гены находятся не в исходных, а в новых сочетаниях благодаря обмену частями несущих их гомологичных хромосом путём кроссинговера. У некоторых бактерий др. мерой Сцепление геновслужит частота совместной передачи по наследству разных генов при конъюгации, генетической трансформации и трансдукции. Сила Сцепление генов может быть различной у разных полов (обычно она больше у гетерогаметного пола, см. Половые хромосомы) или даже Сцепление генов может быть полным (отсутствие кроссинговера) у одного из полов (например, у самцов дрозофилы или у самок тутового шелкопряда). Кроме того, сила Сцепление генов может варьировать в зависимости от возраста родителей, температуры, наличия хромосомных перестроек и др. факторов, а также от присутствия особых мутантных генов, специфически влияющих на силу Сцепления генов.
    Генетические карты

    Они строятся с учётом процента кроссоверных потомков. Чем ближе расположены два гена в хромосоме, тем меньше вероятность кроссинговера между ними, и, следовательно, меньше процента кроссоверных потомков. Больший процент рекомбинантных потомков в анализирующем скрещивании говорит о том, что гены расположены в хромосоме дальше друг от друга. Поэтому, определяя процент кроссоверных по различным признакам потомков, можно построить генетическую карту хромосомы. За единицу расстояния и между генами принимается 1% кроссоверных особей, или 1 Сантиморганида.

    Примечание

    Если расстояние между генами больше 50 Сантиморганид, то говорят о независимом наследовании данного признака.

    Генетические карты человека могут оказаться очень полезными в развитии медицины и здравоохранения. Уже в настоящее время знание о локализации гена на определённой хромосоме используется при диагностике ряда тяжёлых наследственных заболеваний человека. В будущем появится возможность для генной терапии, т. е. исправления структуры или функции гена.

    Цитологические карты хромосом

    Они показывают расположение генов в хромосоме как в цитологической структуре. При этом учитываются все гены, а не только гены, контролирующие признаки организма.

    Цитологические карты составляются на основе дифференциальной окраски хромосом.

    Основные положения хромосомной теории наследственности

    1.Гены расположены в хромосомах линейно в определенных участках – локусах. Аллельные гены занимают одинаковые локусы гомологичных хромосом.

    2.Гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются вместе или сцеплено. Число групп сцепления = числу хромосом в гаплоидном наборе.

    3.Между гомологичными хромосомами возможен кроссинговер, нарушающий сцепление

    4.процесс кроссинговера прямо пропорционален расстоянию между генами.

    1% кроссинговера = 1 сантиморганида

    1. Наследование пола. Роль хромосом в детерминации пола. Типы хромосомной детерминации пола у различных биологических видов. Половой хроматин. Теория Лайон. Наследование признаков, сцепленных с полом. Примеры у человека. Голландрические признаки человека и особенности их генетической детерминации.
    1   2   3   4   5   6   7   8   9   ...   13


    написать администратору сайта