Главная страница

Глик Молекулярная биотехнология. Глик Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение. Пер с англ. М. Мир, 2002. 589 с


Скачать 9.74 Mb.
НазваниеГлик Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение. Пер с англ. М. Мир, 2002. 589 с
АнкорГлик Молекулярная биотехнология.doc
Дата28.01.2017
Размер9.74 Mb.
Формат файлаdoc
Имя файлаГлик Молекулярная биотехнология.doc
ТипДокументы
#189
страница53 из 88
1   ...   49   50   51   52   53   54   55   56   ...   88

ГЛАВА 17.
Генная инженерия растений: методология


Одной из основных задач селекционеров было получение высокоурожайных сортов растений с повышенной пищевой ценностью. Наибольшее внимание уделялось при этом таким зерновым культурам, как кукуруза, пшеница и рис, однако были осуществлены программы и по скрещиванию других сельскохозяйственных и садовых культур. В качестве важного инструмента прямого генетического воздействия на растения применяется технология рекомбинантныхДНК, широко использующаяся в микробиологических системах. К настоящему времени разработано несколько эффективных систем переноса ДНК и экспрессирующих векторов, которые работают в ряде растительных клеток. Одним из достоинств последних является их тотипотентность: из одной клетки может быть регенерировано целое растение, так что из клеток, сконструированных генноинженерными методами, можно получить фертильные растения, все клетки которых несут чужеродный(е) ген(ы) (трансгенные растения). Если такое растение цветет и дает жизнеспособные семена, то желаемый признак передается последующим поколениям.

Можно привести три основных аргумента в пользу получения трансгенных растений. Во-первых, введение гена (генов) часто приводит к повышению сельскохозяйственной ценности и декоративных качеств культурных растений. Во-вторых, трансгенные растения могут служить живыми биореакторами при малозатратном производстве экономически важных белков или метаболитов. В-третьих, генетическая трансформация растений (трансгеноз) позволяет изучать действие генов в ходе развития растения и других биологических процессов.

Некоторые генетически обусловленные признаки — такие как инсектицидная активность, устойчивость к вирусным заболеваниям и гербицидам, замедление старения, устойчивость к неблагоприятным условиям окружающей среды, измененная окраска цветков, повышенная пищевая ценность семян и самой есовмести-мостъ — могут быть приобретены растением при введении в него одного или нескольких генов. На сегодняшний день уже получены многочисленные трансгенные растения на основе как культурных, так и диких видов. Биотехнология несомненно внесет коррективы втрадиционные программы разведения растений, в рамках которых для выведения нового сорта требуется от 10 до 15 лет. А в будущем с ее помощью можно будет создавать растения с совершенно новыми характеристи ками.

Трансформация растений Ti-плазмидой из Agrobacteriumtumefaciens

Грамотрицательная       почвенная       бактерия

Agrobacteriumtumefaciensфитопатоген, который в процессе своего жизненного цикла трансформирует клетки растений. Эта трансформация приводит к образованию корончатого галла - опухоли, нарушающей нормальный рост растения (рис. 17.1). Этой болезни, имеющей серьезные агрономические последствия, подвержены только двудольные растения, в частности виноград, косточковые фруктовые деревья, розы.

Образование корончатого галла начинается с проникновения, интеграции в геном растительных клеток и экспрессии специфического сегмента бактериальной плазмидной ДНК — так

374            ГЛАВА 17






Рис. 17.1. Инфицирование растений A. tumefaciensи образование корончатого галла.

Рис. 17.2. Структурные формулы ацетосирингона и гидроксиацетосирингона. Эти соединения выделяются растением в ответ на повреждение и активируют vir-гены Ti-плазмиды.

называемой Т-ДНК (от англ, transferredDNA). Т-ДНК — это часть плазмиды, индуцирующей развитие опухоли (tumor-inducing plasmid, Ti-плазмиды); ее несут большинство штаммов A. tumefaciens.

Длина Т-ДНК варьирует от 12 до 24 т. п. н. в зависимости от штамма. Штаммы A. tumefaciens, не содержащие Ti-плазмиды, не способны индуцировать развитие корончатого галла.

Инфекционный процесс начинается с прикрепления A. tumefaciensк клеткам растения в месте повреждения, часто у основания стебля (у корневой шейки). Ранее предполагалось, что A. tumefaciensзаражает именно поврежденные растения вследствие разрушения клеточной стенки и устранения физического барьера, затрудняющего проникновение бактерий в клетку. Однако сейчас считается, что все дело в специфических фенольных соединениях, ацетосирингоне и гидроксиацетосирингоне (рис. 17.2), которые выделяет поврежденное растение. Эти соединения сходны с некоторыми продуктами основного пути синтеза у растений вторичных метаболитов, таких как лигнииы и флавоноиды. Ацетосирингон и гидроксиацетосирингон активируют гены вирулентности (νir), которые локализованы в участке Ti-плазмиды длиной 35 т. п. н., находящемся за пределами Т-ДНК. Продукты vir-генов необходимы для транспорта и интеграции Т-ДНК (рис. 17,3) в геном растительной клетки. Существуют по меньшей мере семь разных νir-генов.



Рис. 17.3. Генетическая карта Ti-плазмиды (масштаб не соблюден). Т-ДНК содержит гены ауксина, цитокинина и опина. которые транскрибируются и транслируются только в растительных клетках. За пределами Т-ДНК находится кластер vir-генов, ген(ы), кодирующий(е) фермент(ы) катаболизма опина, и сайт инициации репликации (ori), который обеспечивает стабильное поддержание плазмиды в A. tumefaciens, Л и Π — левая и правая фланкирующие последовательности соответственно.

Генная инженерия растений: методология           375




Рис. 17.4. Биосинтез ауксина и цитокинина при участии ферментов, кодируемых генами Т-ДНК Ti-плазмиды A. tumefaciens, А. Синтез ауксина начинается спревращения триптофана в индолил-3-ацетамид, катализируемого триптофан монооксигеназой. Затем происходит превращение индолил-3-ацетамида в индолилуксусную кислоту ферментом индолил-3-ацетамидгидролазой. Б. Синтез цитокинина включает присоединение изопентенильной группы изопентенилдифосфата к 5'-АМР при участии фермента изопентенилтрансферазы с образованием изопентениладенозинмонофосфата.

376             ГЛАВА 17
После присоединения A. tumefaciens, несущей Ti-плазмиду, к растительной клетке и активации νir-генов Т-ДНК транспортируется в клетку, по-видимому, с помощью механизма, аналогичного механизму переноса плазмидной ДНК из донорной клетки в реципиентную в процессе конъюгации. При этом Т-ДНК находится в одноцепочечной форме, и именно в такой форме она встраивается в хромосомную ДНК растения.

Переход Т-ДНК в одноцепочечную форму начинается с внесения в нее разрывов по обеим фланкирующим ее последовательностям. При этом правая фланкирующая последовательность оказывается на 5'-конце одноиепочечной Т-ДНК, а левая — на 3'-конце. Предполагается, что интеграция Т-ДНК в геном растения зависит от специфических последовательностей, локализованных в правой фланкирующей последовательности, которая содержит повтор длиной 25 п. н. Аналогичный повтор присутствует и в левой последовательности, однако, как показывает делеционный мутагенез, она не принимает участия в интеграции.

Большинство генов Т-ДНК активируются только после ее встраивания в геном растения. Их продукты и вызывают образование корончатого галла. Гены iaaM иiaaH, известные также как tms1 и tms2 соответственно, кодируют ферменты, принимающие участие в синтезе растительного гормона ауксина (индолилуксусной кислоты). Ген iααΜкодирует фермент триптофан-2-монооксигеназу, которая катализирует превращение триптофана в индолил-3-ацетамид, а ген iaaH фермент индолил-3-ацетамидгидролазу, катализирующую образование индолилуксусной кислоты из индолил3-ацетамида (рис. 17.4, А). Кроме того, Т-ДНК несет ген tmr (известный также как ген itp), кодирующий изопентилтрансферазу — фермент, который катализирует присоединение к 5'-АМР изопреноидной боковой цепи с образованием цитокининов изопентениладенина и изопентениладенозинмонофосфата (рис. 17.4, Б), При гидроксилировании этих соединений растительными ферментами образуются цитокинины трансзеатин и трансрибозилзеатин соответственно. И ауксин, и цитокинины регулируют рост и развитие растительной клетки, но, присутствуя в избытке, могут вызывать у растений образование опухолей, таких как корончатый галл.

Кроме генов ауксина и цитокинина, Т-ДНК каждой специфической Ti-плазмиды содержит ген, детерминирующий синтез соединения из класса опинов. Опины — это уникальные продукты конденсации амино- и кетокислот или аминокислот и сахаров. Например, при конденсации аргинина и пировиноградной кислоты образуется октопин, аргинина и α-кетоглутаральдегида — нопалин, а бициклического производного глутаминовой кислоты и сахара — агропин (рис. 17.5). Опины синтезируются в корончатом галле, а затем секретируются. Они могут использоваться как источник углерода (а иногда и как источник азота) любой A. tumefaciens, которая несет в Ti-плазмиде ген(ы) катаболизма соответствующего опина (рис. 17.3), локализованные вне Т-ДНК. Большинство других исследованных почвенных микроорганиз-



Рис. 17.5. Структурные формулы трех опинов: октопина, нопалина и агропина.

Генная инженерия растений; методология            377
мов не способны использовать опины как источник углерода. Таким образом, в процессе эволюции выработался уникальный набор механизмов, посредством которых каждый штамм A. tumefaciens генетически трансформирует растительные клетки в «биологические фабрики» по производству соединений углерода, использовать которые могут только сами эти бактерии.
1   ...   49   50   51   52   53   54   55   56   ...   88


написать администратору сайта