Физика твердого тела (тексты лекций). Гомельский государственный университет имени Франциска Скорины С. А. Хахомов, А. В. Семченко, Ю. В. Никитюк физика твердого тела
Скачать 1.46 Mb.
|
Металлические кристаллыВ узлах кристаллической решетки металлов расположены положительно заряженные ионы металлов. Внешние валентные электроны, в отличие от атомных кристаллов, являются общими для всей решетки в целом (образуют электронное облако). Для металлов характерна поликристаллическая структура. Большинство чистых металлов имеют координационное число К=12, либо К=8. Многим металлам присуще явление полиморфизма, они могут существовать в 4-х различных -, -, -, - кристаллических модификациях, устойчивых в различных интервалах температур. Аналогично ковалентным кристаллам химических элементов в узлах пространственной решетки металлических кристаллов размещаются совершенно одинаковые частицы. Естественно предположить, что между этими одинаковыми частицами не могут возникнуть силы взаимодействия, обеспечивающие ионную связь. Нельзя также объяснить образование металлического состояния с точки зрения ковалентной связи, при которой атом связан с каждым из своих соседей общей парой валентных электронов с антипараллельными спинами. Для установления таких связей у металлов недостает валентных электронов. Наиболее типичными металлами являются элементы первых трех групп периодической системы элементов. За счет своих валентных электронов они могли бы установить ковалентную связь с одним-тремя соседними атомами, тогда как в подавляющем большинстве металлических кристаллов координационное число равно 8 - 12. Какие же силы действуют в металлическом кристалле? При конденсации паров металла в жидкое или твердое состояние его атомы сближаются настолько близко, что волновые функции валентных электронов существенно перекрываются. Вследствие этого валентные электроны получают возможность переходить от одного атома к другому и могут довольно свободно перемещаться по всему объему металла. Таким образом, валентные электроны в металле нельзя считать связанными с одним или несколькими ионами металла, они являются общими для всего объема металла. Поэтому валентные электроны в металлах принято называть «обобществлёнными» или «коллективизированными». Свобода движения валентных электронов внутри металлического кристалла и их большое число в единице объема позволяют провести некоторые аналогии между свойствами валентных электронов в металле и свойствами молекул газа: те и другие могут свободно перемещаться по всему объему (для газов это объем сосуда, а для электронов - объем кристалла). Поэтому для обозначения совокупности свободных валентных электронов внутри металлического кристалла употребляются термины «электронное облако» или «электронный газ». Электронное облако является общим для всего кристалла, оно обладает «цементирующим» действием, связывая в прочную систему положительно заряженные ионы металла (без наличия «цементирующего» действия электронного газа одноименно заряженные ионы металла должны были бы удалиться друг от друга под действием кулоновских сил отталкивания). Под влиянием двух противоположных сил - «стягивающего» действия «коллективизированных» электронов и сил отталкивания между ионами - последние располагаются на некотором равновесном расстоянии друг от друга, соответствующем минимуму потенциальной энергии системы. Из характера металлической связи видно, что она должна быть более гибкой и эластичной, чем ионная и ковалентная связи. Большая пластичность (ковкость) металлов является иллюстрацией этого. Наличие высокой концентрации свободных (коллективизированных) электронов обусловливает хорошую электропроводность и теплопроводность металлов. 4.4 Молекулярные кристаллыВ узлах кристаллической решетки находятся устойчивые молекулы, которые сохраняют индивидуальность не только в газообразной, но и в жидкой и твердой фазах (Н2, N2, С12, Br2 , I2, CH4, СО2, Н2О). Молекулы удерживаются в узлах решетки довольно слабыми вандерваальсовыми силами, природа которых сводится к взаимодействию между молекулярными диполями. Различают три вида взаимодействия молекул, связанных силами Ван-дер-Ваальса. 1. Если молекулы данного вещества являются электрическими диполями, то силы электростатического взаимодействия между ними будут стремиться расположить молекулы в определенном порядке, которому соответствует минимум потенциальной энергии системы. Такой тип взаимодействия полярных молекул, зависящий от их ориентации, называется ориентационным. Тепловое движение молекул стремится нарушить упорядоченное расположение молекул, поэтому энергия ориентационного взаимодействия уменьшается с повышением температуры. 2. Неполярные молекулы некоторых веществ обладают высокой поляризуемостью. Вследствие этого под влиянием внешнего электрического поля у таких молекул возникает наведенный (индуцированный) электрический момент. При сближении такие индуцированные диполи будут взаимодействовать друг с другом аналогично взаимодействию жестких диполей. Такое взаимодействие называют индукционным или поляризационным. Энергия индукционного взаимодействия не зависит от температуры. 3. Возможен другой вид взаимодействия между нейтральными молекулами, получивший название дисперсионного. Поясним механизм возникновения дисперсионных сил на примере взаимодействия двух атомов водорода, когда они находятся достаточно близко друг к другу, но расстояние между атомами значительно больше того, при котором перекрываются электронные облака и возникают ощутимые силы обменного взаимодействия. Атом водорода представляет собою динамическую систему, которая только в среднем является электрически нейтральной. В каждый же отдельный момент времени система протон - электрон обладает мгновенным дипольным моментом, равным произведению заряда электрона на радиус его орбиты. Если в двух близко расположенных атомах водорода электроны движутся синхронно и мгновенные значения их дипольных моментов совпадают по направлению, то между этими нейтральными атомами возникнет сила притяжения, если же мгновенные дипольные моменты атомов противоположны, то они будут отталкиваться. Энергетически более выгодной является конфигурация, соответствующая возникновению сил притяжения. Вообще, в молекулярных кристаллах могут одновременно проявляться все три вида взаимодействия. Большая доля энергии взаимодействия приходится на ориентационный и дисперсионный эффекты, а меньшая - на индукционный. Силы Ван-дер-Ваальса являются более короткодействующими, чем кулоновские силы. Кулоновские силы пропорциональны r-2, а вандерваальсовы силы пропорциональны r-7. Геометрия молекулярных кристаллов может быть очень сложной. Частицы, находящиеся в узлах кристаллической решетки, даже в первом приближении нельзя уподобить шарам или сплюснутым сфероидам, как это делается для ионных, ковалентных и металлических кристаллов. Вандерваальсовы силы всегда слабы, поэтому молекулярные связи четко проявляются лишь в тех случаях, когда они возникают между нейтральными атомами или молекулами. Молекулярная связь легко разрушается тепловым движением, вследствие чего молекулярные кристаллы плавятся при очень низких температурах (гелий, водород, азот, аргон) и легко испаряются (сухой лед - твердый углекислый газ). Многие органические соединения (парафиновые цепи и жирные кислоты) образуют молекулярные кристаллы. |