Главная страница

Физика твердого тела (тексты лекций). Гомельский государственный университет имени Франциска Скорины С. А. Хахомов, А. В. Семченко, Ю. В. Никитюк физика твердого тела


Скачать 1.46 Mb.
НазваниеГомельский государственный университет имени Франциска Скорины С. А. Хахомов, А. В. Семченко, Ю. В. Никитюк физика твердого тела
АнкорФизика твердого тела (тексты лекций).doc
Дата12.12.2017
Размер1.46 Mb.
Формат файлаdoc
Имя файлаФизика твердого тела (тексты лекций).doc
ТипДокументы
#11149
страница5 из 11
1   2   3   4   5   6   7   8   9   10   11

Атомные кристаллы



В узлах кристаллической решетки атомных кристаллов распложены нейтральные атомы. Силы взаимодействия между атомами в таких кристаллах называются обменными. Рассмотрим природу этих сил на примере молекулы водорода H2. Система из двух атомов водорода схематически изображена на рисунке 4.3. Протоны на схеме обозначены буквами а и b, a электроны - цифрами 1 и 2. Расстояния между элементами схемы обозначены буквой r.




Плотность электронного облака, описывающего состояние электрона в атоме водорода, очень быстро падает с увеличением расстояния, поэтому при больших расстояниях между протонами атомы можно рассматривать как изолированные, а энергию системы, состоящей из двух удаленных атомов, можно считать равной 0, где Е0- энергия изолированного атома в невозбужденном состоянии.

По мере уменьшения расстояния rувеличивается степень перекрытия электронных облаков, т. е. увеличивается вероятность перехода электрона к «чужому» протону. Расчет показывает, что при r50 электрон сможет побывать у «чужого» протона примерно один раз за 1012 лет. Сблизим атомы на расстояние r2. В этом случае электрон первого атома, может перейти ко второму, 10­14 раз в секунду. Поэтому теряет смысл говорить о принадлежности данного электрона к данному атому. Фактически образуется общая пара электронов для двух атомов.

Обобществление электронов приводит к перераспределению электронной плотности в пространстве между ядрами атомов и вне ядер. Плотность электронного облака в пространстве между ядрами становится больше плотности, которая бы получилась при простом сложении отдельных плотностей. При этом в пространстве вне ядер оказывается, что суммарная плотность электронного облака будет меньше той, которая бы получилась при сложении плотностей электронных облаков отдельных атомов.

Появление состояния с повышенной плотностью электронного облака в межъядерном пространстве вызывает уменьшение энергии системы и приводит к возникновению сил притяжения между ядрами. В основе возникновения такой связи лежит обменное взаимодействие или обменный эффект, обусловленный обменом атомов электронами и имеющий чисто квантовую природу. Силы такого взаимодействия называются обменными силами, а их энергия - обменной энергией.

Обменное взаимодействие возникает и между другими тождественными частицами, например, между протонами или между нейтронами, когда они сближаются до расстояний, обеспечивающих существенное перекрытие волновых функций этих частиц, что имеет место в атомном ядре.

Нужно отметить, что в зависимости от ориентации спинов обобществленных электронов обменное взаимодействие может проявляться не только в возникновении сил притяжения, но и в возникновении сил отталкивания между сближающимися атомами.

Возникающая в результате обменного взаимодействия ковалентная связь образуется в том направлении, в котором расположена наибольшая часть электронного облака коллективизированных электронов. Это означает, что такая связь имеет направленный характер.

Вследствие того, что ковалентная связь возникает посредством взаимодействия валентных электронов, кристаллы, в которых атомы связаны такой связью, иногда называют валентными.

Представление о перекрывании электронных облаков соседних атомов и обменном направленном взаимодействии двух электронов с антипараллельными спинами составляют основу современной теории строения молекул. Эти представления дали простое объяснение загадочной способности химических сил к насыщению.

Действительно, к молекуле водорода не может присоединиться еще один атом водорода, так как спин его электрона будет параллелен спину одного из электронов, входящих в молекулу водорода, и между ними возникнут силы отталкивания, препятствующие присоединению третьего атома.

В атомных кристаллах тоже нельзя выделить отдельных группировок частиц, которые можно было бы назвать молекулами. Весь кристалл можно рассматривать как гигантскую молекулу с ковалентной связью. Однако при разрушении ковалентной связи, в отличии от ионной, никогда не возникает ионов.

Ковалентная химическая связь очень прочна, поэтому атомные кристаллы отличаются высокой температурой плавления, большой твердостью и малой летучестью.

    1. 1   2   3   4   5   6   7   8   9   10   11


написать администратору сайта