Главная страница

ЛЕКЦИИ Регуляция метаболизма Курс лекций. Е.А. Николайчик. Курс лекций Минск 2002 II


Скачать 2.61 Mb.
НазваниеКурс лекций Минск 2002 II
АнкорЛЕКЦИИ Регуляция метаболизма Курс лекций. Е.А. Николайчик.pdf
Дата12.12.2017
Размер2.61 Mb.
Формат файлаpdf
Имя файлаЛЕКЦИИ Регуляция метаболизма Курс лекций. Е.А. Николайчик.pdf
ТипКурс лекций
#10907
КатегорияБиология. Ветеринария. Сельское хозяйство
страница11 из 17
1   ...   7   8   9   10   11   12   13   14   ...   17
Рис.10.2. Элонгация пептидогликана
Рис.10.3. Молекулярная машина
биосинтеза пептидогликана

- 51 -
Eubacteria. Присутствие клеточной стенки немедленно создает серьезные проблемы при делении.
Жесткой и находящейся под постоянным осмотическим давлением изнутри муреиновой клеточной стенке требуется набор белков для правильного разделения пополам при делении клетки без нарушения целостности структуры, и эти белки должны действует координированно с другими белками, необходимыми для деления как такового.
ftsZ - ген клеточного деления, которому уделяется наибольшее внимание в последнее время, после обнаружения того, что его продукт образует кольцо на внутренней стороне цитоплазматической мембраны в центре клетки. Ген ftsZ, расположенный в кластере mra на 2.5 минуте хромосомной карты, кодирует наиболее многочисленный белок клеточного деления, который присутствует в количестве от
5,000 до 20,000 копий на клетку. FtsZ белок разделяет некоторое сходство последовательности с эукариотическими тубулинами,что согласуется с его слабой ГТФазной активностью. Недавнее определение кристаллических структур FtsZ и тубулина подтвердило, что трехмерные структуры этих белков очень похожи несмотря на низкий уровень сходства первичной последовательности. N-концевые
ГТФ-связывающие домены этих белков являются фактически идентичными, и C-концевые домены также очень схожи, хотя гомология первичных последовательностей C-концевых доменов не детектируется. Функциональное сходство FtsZ с тубулинами подтверждается его способностью собираться in vitro в протофиламенты и мини-кольца, которые близко напоминают структуры, формирыемые тубулином. Учитывая диаметр этих протофиламентов и диаметр клетки, количество FtsZ в клетке достаточно, чтобы образовать протофиламент, окружающий клетку 20 раз. Способность FtsZ полимеризоваться (димеризоваться), была недавно демонстрирована in vivo.
В настоящее время считается, что сокращение кольца, образованного молекулами FtsZ, приводит к продвижению молекулярных машин, синтезирующих клеточную перегородку в месте деления.
Формирование этого кольца является самым ранним видимым признаком деления и может быть обнаружено очень рано в клеточном цикле. Было также показано, что кольца FtsZ могут образовываться в ftsA, ftsQ и ftsI мутантах, так же, как и в ftsW и ftsK штаммах, таким образом указывая, что продукты этих генов не требуются для сборки кольцевой структуры и скорее действуют позже в процессе деления. FtsZ может также образовывать и некольцевые структуры, например дуги в rodA
sui мутанте и спирали в штамме ftsZ26. Эти структуры могут сокращаться и таким образом определять форму отклоняющейся септы. Это также косвенно предполагает, что сборка кольца FtsZ начинается на "сайте нуклеации" на внутренней мембране (возможно, другом белке клеточного деления), от которого и начинается его двунаправленная полимеризация. Другой подход, основанный на наблюдении гибридов
FtsZ-GFP in vivo, также подтверждает присутствие Z-колец в живых клетках; более того, когда гибридный белок сверхпродуцируется, наблюдаются спиральные структуры. FtsZ-GFP также иногда образует двойные кольца в клеточном центре. Делеция 67 неконсервативных C-концевых остатков FtsZ в гибридном белке предотвращает формирование Z-кольца, но не останавливает полимеризации, более того, полимеры, формирующиеся с этим делеционным вариантом (спирали и толстые листы), оказываются гораздо более устойчивыми и имеют более яркую флюоресценцию.
Гомологи FtsZ были найдены в разнообразных Eubacteria и Archaea, включая все организмы, для которых полные геномные последовательности уже определены (кроме C. trachomatis); этот белок был найден даже в высшем растении, Arabidopsis thaliana, где он кодируется ядерным геном, но очевидно требуется для деления хлоропластов.
Свойства Z-кольца, главным образом его формирование рано в клеточном цикле, местоположение в середине клетки на будущем сайте деления, и его видимое сокращение в течение процесса деления, обеспечивают привлекательное основание для предположений, что кольцо FtsZ может быть сайтом сборки для других белков, вовлеченных в деление, а также движущей силой или, по крайней мере, ее составляющей, направляющей образование септы. Для выполнения этих двух предполагаемых функций
FtsZ должен взаимодействовать по крайней мере с некоторыми из предложенных участников комплекса деления. Некоторое доказательство для такого взаимодействия появилось недавно и обсуждается позже в этой главе.
Ген ftsA, расположенный перед ftsZ, кодирует 46 kDa белок, присутствующий в количестве приблизительно 150 молекул на клетку. Правильное отношение FtsA к FtsZ (1:100) является необходимым для успешного деления. Цитоплазматическая форма FtsA может фосфорилироваться и в фосфорилированном состоянии является способной к связыванию АТФ, тогда как в нефосфорилируемой форме белок связывается с клеточной мембраной. Белок - член большого

- 52 - семейства АТФ-связывающих белков, которые включают актины и белки теплового шока (HSP70), и было предположено, что белок имеет трехмерную структуру, типичную для представителей этого семейства . Однако мутации по основаниям, которые, как предполагается, являются необходимыми для функции АТФазы, так же, как и по фосфорилируемым остаткам, не изменяет способность белка комплементировать известные температурочувствительные мутации ftsA. Недавно было показано с использованием иммунофлуоресцентной микроскопии и GFP гибридов, что FtsA следует непосредственно за FtsZ во время деления - кольцо визуализируется в середине клетки, немного позже чем кольцо FtsZ, и эти структуры ведут себя точно тем же самым способом в различных мутантах, которые имеют некольцевые FtsZ структуры (спирали или дуги). FtsA, вероятно, включается в формирующуюся структуру септы немедленно после того, как образуется кольцо FtsZ. Это утверждение основано на факте, что кольца FtsZ могут образовывать в мутантах FtsA, но не наоборот . Еще одно доказательство в пользу этого - то, что гибридный белок FtsA-GFP, обычно локализующийся в центре клеток, образует спиральные структуры (такие же, как и у FtsZ-GFP гибридов), когда концентрация FtsZ увеличена. Также, часть гибридного белка FtsA-GFP оказывалась ассоциированной с мембраной, что подтверждает существование двух субпопуляций FtsA, локализованных в цитоплазме или клеточной мембране согласно состоянию их фосфорилирования.
ftsQ находится перед геном ftsA. Его продукт - 31 kDa белок цитоплазматической мембраны с единственной N-концевой трансмембранной
α-спиралью. Большая часть белка расположена в периплазме . FtsQ белок, по оценкам, присутствует в количестве от 50 до 100 копий на клетку. Мутанты этого гена дают филаменты без признаков сокращений, но сокращения становятся видны, если ввести вторую мутацию в гене rodA, что свидетельствует в пользу действия FtsQ после FtsZ.
Цитоплазматический и трансмембранный домен FtsQ не являются специфическими для его функции и могут быть заменены мембранным якорем от другого белка. Периплазматический домен - единственная часть белка, требующаяся для септальной локализации и достаточная для комплементации ftsQ1
ts мутанта. Правильная локализация FtsQ зависит от цитоплазматических белков FtsZ и FtsA, но не от периплазматических FtsL или FtsI. Это свидетельствует в пользу того, что FtsQ действует на промежуточной стадии образования септы и вероятно взаимодействует с периплазматическим белком, отличным от FtsL и FtsI, для достижения правильной локализации во время деления.
ftsW расположен между murD и murG в генном кластере mra. Мутанты ftsW филаментируют без видимых сокращений даже когда объединены со сферическими мутациями, что предполлагает раннюю роль в клеточном делении. Высокая гидрофобность и гомология с RodA предполагают локализацию белка во внутренней мембране. Было предложено, что белок FtsW взаимодействовует с PBP3, но нет никакого прямого доказательства этого взаимодействия. Ранний блок деления в мутантах ftsW может быть обусловлен стабилизацией кольца FtsZ, поскольку кольцо отсутствует у 50 % филаментов в штамме, полностью лишенном FtsW, и число колец уменьшено у оставшихся 50 %.
ftsN ген, расположенный на 88.5 минуте, кодирует 36 kDa белок с трансмембранным сегментом около N-конца, коротким N-концевым цитоплазматическим и большим периплазматическим доменами.
Белок присутствует в количестве приблизительно 50 молекул на клетку. Цитоплазматический домен белка оказывается абсолютно необязательным, и трансмембранный сегмент может быть заменен трансмембранным доменом MalG или даже отрезаемой сигнальной последовательностью белка MalE, из чего следует, что только периплазматическая часть белка определяет его специфическую функцию. С другой стороны, перемещение белка в периплазму абсолютно необходимо для его нормального функционирования. Ген был первоначально изолирован как мультикопийный супрессор ftsA12 мутации, а затем была показана его способность супрессировать ftsI23 и ftsQ1 мутации, две мутации ftsW и ftsK44
. Так как истощение клеточного запаса FtsN ведет к филаментации (длинные несегментированные филаменты), он считается жизненно необходимым белком клеточного деления. Мутантный фенотип, количество белка и его местоположение вели к предложению, что FtsN функционирует вместе с FtsQ,
FtsI и FtsL в 'стехиометрическом комплексе' на сайте формирования септы.
ftsL (mraR) находится близко к самому началу генного кластера mra. Его продукт - 13.6 kDa белoк цитоплазматической мембраны с одним пронизывающим мембрану доменом и большeй частью белка, расположенной в периплазме. Белок присутствует в количестве от 30 до 40 копий на клетку, и мутация ведет к продукции несегментированных филаментов. Белок содержит лейциновую застежку, которая

- 53 - может быть жизненно важна для его функции, возможно управляя его димеризацией. FtsL - мембранный белок с маленькими цитоплазматическими и трансмембранными доменами и большим периплазматическим доменом. В отличие от некоторых других белков деления, и цитоплазматические, и пронизывающие мембрану домены оказывались специфичными и жизненно важными для правильного функционирования этого белка. Недавняя работа продемонстрировала, что, подобно нескольким другим белкам клеточного деления, FtsL образует кольцевную структуру в центре клетки довольно поздно в процессе деления. Эта локализация зависит от функции FtsZ, FtsA и FtsQ, но не FtsI.
С другой стороны, локализация FtsQ, FtsA и FtsZ не требует FtsL.
zipA ген был обнаружен недавно при помощи процедуры аффинного блоттинга, в течение поиска белков, специфично взаимодействующих с FtsZ. Ген оказался жизненно важным. Его инсерционная инактивация в присутствии комплементирующей термочувствительной плазмиды дает длинные несегментированные филаменты при непермиссивной температуре. Интересно, что сверхэкспрессия
ZipA также блокировала клеточное деление, но этот блок может быть полностью преодолен путем увеличения количества FtsZ, что также свидетельствует в пользу возможности взаимодействия между этими двумя белками. Кроме того, гибриды ZipA::GFP локализовались в кольцевной структуре в середине клеток в 91 % случаев, иногда будучи видимыми даже в очень молодых клетках. Это напоминает поведение FtsZ колец, описанных. ZipA - белок с предсказанным молекулярным весом 36 kDa, который мигрирует как 50 kDa на гелях SDS-PAGE. Самый N-конец белка предположительно локализуется во внутренней мембране, а остальная часть - в цитоплазме. Немедленно после пронизывающего мембрану домена есть и богатая пролином и глутамином областьразмером 103 остатка, которая может образовывать жесткий линкер между мембранным якорем и C-концевым доменом белка. Эта структура, так же, как и местоположение белка, делает его хорошим кандидатом на роль связки между мембраной и кольцом FtsZ. Возможность прямого взаимодействия между ZipA и
FtsZ поддержана присутствием мотивов в последовательности ZipA, подобных доменам связывания с микротрубочками нескольких эукариотических белков, и демонстрации стабилизации FtsZ- протофиламентов in vitro при помощи ZipA. Hale и de Boer первоначально предложили возможную роль
ZipA как центра нуклеации сборки кольца FtsZ (что соответствует его присутствию в количестве 1-10 %
FtsZ). Это предположение, однако, может быть и неверно, так как более поздняя работа показала, что Z- кольца по прежнему образуются в отсутствии ZipA, хотя количество сформированных колец и уменьшатся. Срединная локализация самого ZipA оказывалась FtsZ-, но не FtsA- или FtsI зависимой . И, в свою очередь, септальная локализация FtsA не зависела от ZipA.
ftsI находится в том же самом кластере, что и ftsQAZ, и кодирует специфическую для септы синтетазу муреина, PBP3 . Белок, как оценивают, присутствует в 50-100 копиях в клетку . PBP3 - трансмембранный белок с каталитическим доменом, расположенным в периплазме. Мутанты филаментируют с сокращениями, видимыми только после введения сферической мутации. PBP3 - специфическая для деления транспептидаза. Было высказано предположение, что PBP3 требуется какой-то дополнительный белок, чтобы проявить трансгликозилазную активность, подобно PBP2 и
RodA белкам. FtsW был предложен для этой функции на основе сходства последовательности между
FtsW и RodA; доказательство для этого взаимодействия, однако, отсутствует.
Белок локализуется к септе на последних стадиях деления; часть белка также наблюдается на клеточных полюсах. Для правильной септальной локализации белка требуется его собственный трансмембранный домен, а также FtsZ, FtsA, FtsQ, и FtsL.
Ген ftsK расположен на 20 минуте хромосомы после SOS-индуцибельного промотора (dinH) и кодирует цитоплазматический мембранный белок с предсказанным размером приблизительно 147 kDa.
Белок высоко гомологичен нескольким белкам SpoIIIE грамположительных бактерий. В B. subtilis этот белок ответствечает за правильное распределение одной из сестринских хромосом в споровый компартмент, а также может быть вовлечен в завершение септы. Кроме того, C-концевая часть белка имеет существенную гомологию со множеством Tra белков плазмид Streptomyces и конъюгативного транспозона Tn916. FtsK, подобно SpoIIIE, имеет гидрофобную N-концевую область с несколькими потенциальными трансмембранными сегментами и большим цитоплазматическим доменом, содержащим нуклеотидсвязывающий мотив. Белок локализован в центре клетки во время клеточного

- 54 - деления, а при помощи гибрида N-концевого мембранного домена FtsK с белком GFP было показано, что только N-концевые 15 % белка требуются для правильной локализации. Та же самая N-концевая часть достаточна для комплементации ftsK44 мутации. Изолированная первой термочувствительная мутация ftsK44 локализуется в этой части белка в одном из
α-спиральных трансмембранных сегментов, и это мутационное изменение фактически предотвращает правильную локализацию белка. Фенотип двойного мутанта ftsK rodA свидетельствует в пользу того, что белок действует поздно в делении. Это поддержано выбором времени локализации FtsK - FtsK-GFP гибрид локализуется на сайте деления только тогда, когда уже есть видимое сокращение. С другой стороны, данные иммунофлуоресценции указывают на то, FtsK локализуется к септе рано, что поддерживается гладким фенотипом филаментов, образуемых нулевым мутантом.
Недавние данные предлагают, что С-концевая часть белка, которая имеет самую высокую гомологию с SpoIIIE и другими белками с "ДНК-мобилизующей" функцией, действительно требуется для нормального разделения ДНК между сестринскими клетками в течение деления. Чтобы подвести итог, N-концевая часть FtsK вероятно играет некоторую роль при завершении септы, в то время как С- концевой домен необходим, чтобы переместить ДНК, которая могла бы быть поймана закрывающейся септой, в правильный компартмент.
10.1.4. Сегрегация нуклеоидов.
Очевидно, клетка должна копировать свою хромосому в течение каждого клеточного цикла и гарантировать, что полученные копии окажутся в различных дочерних клетках. Поэтому деление должно быть так или иначе скоординировано с репликацией хромосомы и сегрегацией нуклеоидов.
Поскольку скорость репликации ДНК при данной температуре постоянна, клетки достигают необходимого числа полных хромосом к времени деления через контроль инициации репликации - интервалы между событиями инициации равны интервалам между делением. Это приводит к тому, что быстро растущие клетки имеют множественные хромосомы.
Разделение сестринских нуклеоидов, очевидно, является необходимой предпосылкой для деления, и похоже, что пространство, свододное от нуклеоидов, может определять расположение септы (и, в свою очередь, формирование септы ингибируется в областях, где нуклеоид присутствует). В настоящее время нет полного согласия по поводу механизмов, осуществляющих разделение нуклеоидов, но недавно было продемонстрировано, что E. coli (также как другие бактерии) имеет активный подобный митотическому аппарат сегрегации . К сожалению, не известно, какие белки вовлечены в быструю сегрегацию точек начала репликации хромосом. Два возможных кандидата на эту роль - FtsKи продукты muk генов.
mukB мутанты имеют слегка филаментирующий фенотип и существенный процент безъядерных клеток. У мутанта хорошо выражено нерегулярное разделение нуклеоидов. MukB - самый крупный из охарактеризованных прокариотических белков. Он разделяет некоторое сходство с эукариотическими миозинами и имеет доменную структуру, напоминающую об эукариотических моторных белках кинезине и миозине, что совместимо с его предложенной функцией моторного белка, перемещающиеся нуклеоиды. Эта возможность поддерживается недавней демонстрацией специфического связывания
MukB с микротрубочками. В дном опероне с mukB расположены два других гена, mukE и mukF. Их инактивация также ведет к дефекту в разделении нуклеоидов и продукции безъядерных клеток.
Очищенный MukB белок имеет низкую АТФазную и ГТФазную активности. N-концевой домен
MukB связывается с высокой аффинностью с FtsZ. FtsZ может стимулировать АТФазную и ГТФазную активности MukB. Эти свойства совместимы с предполагаемой функцией MukB как моторного белка, использующего FtsZ как опору для генерации силы внутри клеток E. coli. Поскольку кольцо FtsZ собирается рано, MukB мог бы использовать это как "маркер", чтобы отодвинуть нуклеоиды от сайта, где будет сформирована будущая септа. В соответствии с этим продемонстрировали двунаправленное перемещение регулятора инициации репликации SeqA. Это перемещение происходило после формирования Z-кольца и требовало присутствия MukB.
Продукт гена
1   ...   7   8   9   10   11   12   13   14   ...   17


написать администратору сайта