Главная страница
Навигация по странице:

  • Конструкционные клеи.

  • Пенопласты.

  • ЛЕКЦИЯ 26. Технология производства алифатических и ароматических полиамидов.

  • Технология производства алифатических и ароматических полиамидов


  • ω-Додекалактам

  • ω-Аминоэнантовая кислота

  • 11-Аминоундекановая кислота.

  • Производство и свойства поликапроамида (капрон, найлон 6)

  • Производство и свойства полигексаметиленадипамида (анид, найлон 66, П-66)

  • Производство ВМС на предпр. НХ. Производство ВМС на предпр. Лекции по курсу производство вмс на предприятиях нефтехимии


    Скачать 2.6 Mb.
    НазваниеЛекции по курсу производство вмс на предприятиях нефтехимии
    АнкорПроизводство ВМС на предпр. НХ.docx
    Дата03.05.2017
    Размер2.6 Mb.
    Формат файлаdocx
    Имя файлаПроизводство ВМС на предпр. НХ.docx
    ТипЛекции
    #6751
    страница47 из 48
    1   ...   40   41   42   43   44   45   46   47   48

    Производство и свойства эпоксидно-новолачных блок-соолигомеров
    В промышленности нашел распространение способ получения ЭНБС периодическим методом путем сплавления ЭС и НФФС при 115-125°С. Для получения ЭНБС применяют различные ЭС и определенные соотношения компонентов:
    Марка ЭНБС 20ЭН010-50 16ЭН010-60 16ЭН0112-60

    (6ЭИ60-1)

    Марка ЭС ЭД-20 ЭД-16 ЭД-16

    Марка НФФС СФ-010 СФ010 СФ-0112

    Соотношение

    ЭС : НФФС, % масс. 50 : 50 60 : 40 60 : 40
    Технологический процесс получения эпоксидно-новолачных блок-соолигомеров проводят на оборудовании для производства новолачных смол. Он состоит из следующих стадий: подготовка, загрузка компонентов сырья, сплавление эпоксидной и новолачной смол, грануляция.
    Предварительно нагретая до 90-110°С ЭС подается из обогреваемой емкости 1 насосом 2 в весовой мерник-дозатор 3, а затем через фильтр 4 в реактор 5. Температуру в реакторе поднимают до 115-125 °С. Затем при постоянном перемешивании порциями из бункера 6 с помощью пневмотранспорта 7 через дозатор со шнековым питателем 8 загружают необходимое количество новолачной смолы. После растворения новолачной смолы в эпоксидной проводят периодический отбор и анализ проб на температуру каплепадения по Уббелоде или температуру размягчения по методу «кольцо-шар», или по динамической вязкости расплава при 120 °С. В процессе синтеза в аппарате с помощью вакуум-насоса 10 поддерживают давление 0,04-0,05 МПа для отгона влаги, остаточного фенола и других летучих продуктов, которые конденсируются в холодильнике 9 и собираются в сборнике 11.\\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image41.png

    При получении необходимых нормативных качественных показателей расплав сливают в обогреваемую емкость с мешалкой 12, где поддерживается температура расплава 85-90 °С. Далее расплав подается на непрерывную охлаждаемую ленту гра-нулятора 13 или барабан для грануляции и упаковывается в тару 14.

    Некоторые свойства неотвержденных ЭНБС на основе эпоксидной смолы марки ЭД-16 и новолачной смолы марки СФ-010 в зависимости от продолжительности синтеза представлены в табл. 17.1.
    \\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image42.png


    Свойства отвержденных полимеров, полученных на основе синтезированных ЭНБС, также зависят от продолжительности синтеза (табл. 17.2).
    \\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image43.png



    Совокупный анализ данных табл. 17.1 и 17.2 показывает, что увеличение продолжительности синтеза приводит к повышению молекулярных масс ЭНБС и, соответственно, к повышению прочности при изгибе, ударной вязкости отвержденных продуктов. Малое время предварительного взаимодействия при синтезе ЭНБС позволяет получить повышенную твердость, теплостойкость и повышенную прочность при сжатии отвержденных материалов.

    ЭНБС нашли применение в различных отраслях промышленности в качестве компонентов связующих для получения заливочных компаундов, абразивных материалов, покрытий с высокими защитными свойствами, высокопрочных конструкционных клеев для металлов и стеклопластиков, пенопластов для прочных объемных многослойных конструкций и герметизации радиоэлектронных устройств.
    Конструкционные клеи. На основе ЭНБС разработаны термореактивные конструкционные клеи марок ЭН, КЭН, и БЭН. Клеи КЭН и БЭН содержат в качестве модификаторов карбоксилсодержащий акрилонитрильный каучук и полимер — по-ливинилбутираль. Клеи могут использоваться для получения клеевых соединения сталей, алюминиевых сплавов, латуни, меди, стекло- и углепластиков, работающих в различных неблагоприятных средах. В табл. 17.3 приведены примеры прочности клеевых соединений при сдвиге для различных металлов, склеенных клеями на основе ЭНБС марки 16ЭН010-60.

    \\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image44.png
    Пенопласты. Особенностью композиций для пенопластов на основе ЭНБС является возможность получения одноупаковочных порошковых полуфабрикатов с длительной жизнеспособностью при хранении и их способность вспениваться и отверж-даться при сравнительно невысоких температурах 80-115°С. При этом получаются жесткие высокопрочные закрытоячеистые пеноматериалы, работоспособные в растворах кислот, щелочей, маслах, топливах и других средах. Композиции после вспенивания имеют повышенную адгезию к металлам, стеклопластикам и используются как электроизоляционные и герметизирующие материалы в приборостроении и микроэлектронике. Свойства некоторых марок пенопластов на основе одноупаковочных порошковых композиций ЭНБС марки 6ЭИ60-1 приведены в табл. 17.4.

    \\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image45.png

    ЛЕКЦИЯ 26. Технология производства алифатических и ароматических полиамидов. Исходные продукты. Производство и свойства поликапроамида (капрон, найлон 6). Производство и свойства полигексаметиленадипамида (анид, найлон 66, П-66). Производство и свойства полидодеканамида (полиамид 12, П-12). Производство и свойства полифениленизофталамида (фенилом). Производство модифицированных полиамидов (полиамиды 54, 548, 54/10 и др.)
    Технология производства алифатических и ароматических полиамидов

    К полиамидам (ПА) относятся многие природные и синтетические полимеры: белки, шерсть, полимеры аминокарбоиовых кислот, амиды полиакриловой и поли-метакриловой кислот, поли-N-винилацетамид и др. Они содержат амидную группу CONH2 или - СО NH-. Если основная цепь макромолекулы построена из атомов углерода, а амидные группы находятся в боковых цепях, то такие ПА называются карбоцепными, если же амидные группы расположены в основной цепи макромолекулы, то ПА носят название гетероцепных. В данной главе рассматриваются синтетические гетероцепные полиамиды. Все они термопластичны.

    Основное применение ПА нашли в текстильной промышленности для производства синтетических тканей. В качестве пластмасс их используют в меньшем объеме. Существует широкий марочный ассортимент ПА (литьевые, экструзионные, пластифицированные, наполненные, армированные, пленочные, клеевые, лаковые и др.) и большое разнообразие типов ПА, отличающихся химическим строением и физико-механическими свойствами.

    Для обозначения химического состава ПА широко применяется числовая система. ПА, полученный из аминокислот, обозначается одним числом, соответствующим числу углеродных атомов в исходной аминокислоте. Например, полиамид ПА 6 — полимер ε-аминокапроновой кислоты NH2(CH2)5COOH (или ее лакгама), полиамид П-11 — полимер аминоундекановой кислоты NH2(CH2),0COOH, полиамид П-7 — полимер аминоэнантовой кислоты NH2(CH2)6COOH.

    Композиция из двух чисел указывает на то, что ПА получен из диамина и дикарбоновой кислоты. Отдельные числа указывают на содержание углеродных атомов в цепях диамина (первое число) и дикарбоновой кислоты. Например, полиамид П-66 получается из гексаметилендиамина NH2(CH2)6NH2 и адипиновой кислоты НООС(СН2)4СООН, а полиамид П-610 из гексаметилендиамина и себациновой кислоты НООС(СН2)8СООН.

    Сополимеры обозначаются комбинацией соответствующих чисел, после которых указывается соотношение массовых частей компонентов, взятых в реакцию. Например, полиамид 66/6- 80/20 получается из полиамида П-66 (80 ч.) и полиамида П-6 (20 ч.).
    Исходные продукты

    Исходными продуктами для получения ПА являются лактамы и аминокислоты, а также диамины и дикарбоновые кислоты.

    \\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image46.png

    ε-Капролактам получают многостадийным синтезом из бензола, фенола или цик-логексана. Примером может служить синтез из фенола:

    ε-Капролактам легко растворяется в воде и в большинстве органических растворителей. При гидролизе образуется ε-аминокапроновая кислота.

    Ниже указаны температуры плавления и кипения ε-капролактама и других исходных продуктов производства ПА:

    \\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image47.png



    ω-Додекалактам (лауриллактам) получают многостадийным синтезом из бутадиена-1,3:
    \\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image48.png
    ω-Додекалактам хорошо растворяется в спирте, бензоле, ацетоне, плохо — в воде. Полимеризуется он хуже, чем капролактам.

    ω-Аминоэнантовая кислота (7-аминогептановая кислота) образуется из α,α,α,ω-тетрахлоргептана при его гидролизе в присутствии серной кислоты и последующем аммонолизе полученной ω-хлорэнантовой кислоты:

    \\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image49.png
    ω-Амииоэнантовая кислота растворяется в воде и нерастворима в спирте, ацетоне и других органических растворителях.

    11-Аминоундекановая кислота. Исходным сырьем для ее получения является касторовое масло, представляющее собой в основном глицериновый эфир рицинолевой кислоты. При его омылении и пиролизе образуется ундециленовая кислота, из которой при обработке бромистым водородом в присутствии перекиси бензоила получают 11-бромундекановую кислоту. Последнюю с помощью аммиака переводят в 11-аминоундекановую кислоту, растворимую в горячей воде и горячем спирте:

    \\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image50.png
    Другим способом получения 11-аминоундекановой кислоты является гидролиз и последующий аммонолиз а,а,а,ω -тетрахлорундекана, приготовляемого теломеризацией этилена с четыреххлористым углеродом.
    Производство и свойства поликапроамида (капрон, найлон 6)
    Поликапроамид (П-6, найлон 6) в промышленности получают главным образом гидролитической полимеризацией капролактама, протекающей под действием воды и кислот, которые вызывают гидролиз лактамного цикла:

    \\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image51.png
    Наиболее медленной стадией является реакция гидролиза, лимитирующая скорость образования полимера. Поэтому на производстве специально добавляют в реакционную смесь аминокапроновую кислоту или соль АГ, приготовленную из адипиновой кислоты и гексаметилендиамина, являющихся катализаторами этой реакции. Процесс проводят по периодической (в автоклавах под давлением) или непрерывной (в реакторах колонного типа при атмосферном давлении) схеме.

    Технологический процесс производства поликапроамида непрерывным методом состоит из следующих стадий: подготовка сырья, полимеризация капролактама, охлаждение, измельчение, промывка и сушка полиамида (рис. 18.1).

    Поликапроамид получают из капролактама в расплаве в присутствии водного раствора соли АГ. Подготовка сырья заключается в плавлении капролактама и приготовлении 50%-ного водного раствора соли АГ. Капролактам с помощью шнекового питателя подают в плавитель 1 и нагревают до 90—95 °С. Шнековый питатель работает автоматически в зависимости от уровня жидкого капролактама в плавителе. Капролактам непрерывно поступает через фильтр 2 в реактор колонного типа 3. В него же непрерывно подается раствор соли АГ.

    Реактор представляет собой вертикальную трубу (или колонну) диаметром, например, 250 мм и высотой 6000 мм, снабженную рубашкой для обогрева. Внутри колонны расположены горизонтальные перфорированные тарелки на расстоянии 300 мм одна от другой, которые способствуют турбулизации и перемешиванию реакционной массы при движении ее сверху вниз. Колонна заканчивается конусом и фильерой для слива полимера.

    Реактор и фильера обогреваются парами высокотемпературного теплоносителя, например, динила до 270 °С. В реактор подают 26-30 л/ч капролактама и 2,5-3,0 л/ч 50 %-ного раствора соли АГ.

    В процессе реакции выделяется вода, пары которой, выходя из реактора, увлекают за собой и пары капролактама. Смесь паров поступает в теплообменники 4, в которых капролактам конденсируется и стекает обратно в реактор, а вода собирается в сборнике 5. Конверсия мономера 88-90 %. Расплавленный полимер из реактора поступает под давлением в фильеру, откуда выдавливается через щель на холодную поверхность вращающегося барабана 6 (или в ванну с холодной проточной водой), где охлаждается и в виде лент поступает на измельчение в резательный станок 7. Крошку полимера собирают в бункере 8, а затем передают в промыватель-экстрактор 9, в котором она промывается горячей водой для удаления непрореагировавшего кап- ролактама. Высушивают крошку в вакуум-сушилке 10 при температуре не выше 125— 130 °С до содержания влаги 0,1 %.

    \\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image52.png
    В поликапроамиде, выгружаемом из реактора 3, содержится до 10-12 % непрореагировавшего капролактама и низкомолекулярных полимеров. Они снижают физико-механические свойства полиамида, и поэтому их удаляют экстракцией горячей водой.

    Поликапроамид также получают из капролактама методом анионной полимеризации в расплаве мономера при 160-220 °С. Катализаторами реакции являются щелочные металлы (литий, натрий, калий), их окислы и гидраты окислов, а также другие соединения. Температуру реакции можно снизить до 160-180 °С добавлением к катализаторам специальных веществ — активаторов (ацетилкапролактама, моно- и диизоцианатов). Можно, например, применять системы, состоящие из Na-соли капролактама и N-ацетилкапролактама или натрия и толуилендиизоцианата.

    При этом достигается конверсия капролактама 97-98 % за 1-1,5 ч. Реакция протекает по схеме:
    \\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image53.png
    Анионная полимеризация капролактама применяется для получения поликапроамида в формах (рис. 18.2). Получают заготовки массой от одного до нескольких сотен килограмм. Изделия из них (шестерни, подшипники и др.) готовят механической обработкой. Поликапроамид, получаемый этим методом (методом «химического формования»), носит название «капролон В». Некоторые виды изделии (трубы, втулки, емкости) могут быть получены анионной полимеризацией капролактама в условиях центробежного и ротационного формования.

    \\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image54.png
    Для получения капролона В в формах высушенный капролактам плавят при 85-90°С в плавителе 1, часть его после фильтрования на фильтре 2 смешивают с катализатором 0,6 %мол. Na в смесителе 3 при 95-100 °С и получают раствор Na-соли капролактама в капролактаме. Сокатализатор N-ацетилкапролактам в количестве 0,6 % мол. также растворяют в капролактаме в смесителе 4. Затем все растворы, нагретые до 135-140°С, с помощью дозировочных насосов подают в смеситель 5, перемешивают и заливают в формы 6. Формы устанавливают в термошкафы 7 на 1-1,5 ч для полимеризации при постепенном повышении температуры от 140 до 180 °С.

    Ряд физико-механических свойств поликапроамида, получаемого анионной полимеризацией, в 1,5—1,6 раза выше свойств полимера, изготовляемого гетеролитической полимеризацией. Полимер не нуждается в отмывке от капролактама, так как его содержание не превышает 1,5-2,5 %.

    Свойства поликапроамида П-6 представлены в табл.18.1.

    \\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image55.png
    Производство и свойства полигексаметиленадипамида (анид, найлон 66, П-66)
    Полигексаметиленадипамид (П-66, найлон 66) в промышленности получают из гексаметилендиамина и адипиновой кислоты реакцией поликонденсации:

    \\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image56.png
    Образование ПА из аминокислот, а также из дикарбоновых кислот и диаминов протекает с выделением воды, и ввиду небольших значений константы равновесия реакция поликонденсации имеет обратимый и равновесный характер. Равновесие можно сдвинуть в сторону образования полимера, если из сферы реакции удалять побочный продукт — воду. Если же воду не удалять, то устанавливается равновесие и процесс поликонденсации прекращается. Реакция имеет ступенчатый характер. Каждая ступень взаимодействия двух функциональных группировок равноценна и требует приблизительно одинаковой энергии активации. Все продукты, образующиеся на промежуточных стадиях реакции, представляют собой устойчивые дифункциональные соединения, обладающие, в свою очередь, способностью реагировать друг с другом. Рост цепи происходит не только вследствие взаимодействия молекул исходных веществ, которые очень быстро расходуются, но в большей степени в результате поликонденсации образовавшихся промежуточных полимерных продуктов.

    Высокомолекулярные ПА образуются не в результате одновременной реакции всех молекул, а медленно, практически без заметного выделения тепла. Скорость реакции зависит в основном от температуры, увеличиваясь с ее повышением.

    Молекулярная масса ПА определяется временем и температурой реакции. Соотношение исходных компонентов сильно влияет на завершение реакции поликонденсации и молекулярную массу полимера.

    Избыток одного из реагентов способствует образованию цепей полимера, на концах которых находятся группы, присутствующие в избыточном компоненте, что приводит к прекращению реакции роста цепи:

    \\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image57.png

    При избытке диамина концевыми группами полимера будут — NH2, а при избытке кислоты — СООН.

    Для получения наиболее высокомолекулярного полимера при взаимодействии дикарбоновых кислот с диаминами оба компонента должны присутствовать в реакционной среде в строго эквимолекулярных количествах. Теоретически применение такого соотношения компонентов должно было бы привести к образованию полимера с бесконечно большой молекулярной массой, однако на практике ввиду неизбежных потерь части реагентов (например, вследствие уноса с побочным продуктом конденсации) и побочных реакций, в которые могут вступать функциональные группы, молекулярная масса ПА находится в пределах 10 000-25 000.

    Продукты поликонденсации представляют собой смеси макромолекул, молекулярные массы которых мало различаются. Причиной отсутствия значительной полидисперсности являются деструктивные процессы, происходящие как под влиянием избытка одного из реагентов, так и под воздействием низкомолекулярных фракций. В первую очередь деструкции подвергаются более высокомолекулярные фракции. По составу ПА весьма гомогенны, содержат сравнительно немного низкомолекулярных фракций, представляющих остаток еще не завершенного процесса, и не содержат высокомолекулярных фракций.

    Избыток одного из реагентов в реакционной смеси приводит к ограничению молекулярной массы. Такой же эффект наблюдается при добавлении к реакционной смеси, составленной из эквимолекулярных количеств компонентов, монофункциональных соединений, которые способны реагировать с концевыми группами ПА. В зависимости от количества добавляемого монофункционального вещества, называемого стабилизатором или регулятором вязкости, можно получать ПА определенной степени поликонденсации вследствие прекращения роста цепей.

    В качестве стабилизаторов большей частью употребляют уксусную и бензойную кислоты. В результате реакции гексаметилендиамина с адипиновой и уксусной кислотами образуются полимерные цепи, имеющие на концах ацетамидные группы:

    \\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image58.png

    Конечно, в смеси присутствуют также и цепи, не содержащие этих концевых групп.

    Стабилизаторы не только ограничивают молекулярную массу полимеров, но и помогают получать продукты с определенной и постоянной вязкостью расплава, не изменяющейся при повторном плавлении уже в условиях изготовления изделий. ПА, полученные без стабилизатора, на концах цепей содержат реакционноспособные группы, за счет которых при повторном плавлении возможно дальнейшее протекание реакции поликонденсации, приводящее к увеличению вязкости расплава.

    Технологический процесс получения полигексаметиленадипамида состоит из следующих стадий: приготовление соли адипиновой кислоты и гексаметилендиамина (соль АГ), поликонденсация соли АГ, фильтрование расплава полиамида, охлаждение, измельчение и сушка полимера (рис. 18.3).

    Соль АГ готовят смешением 20 %-ного метанольного раствора адипиновой кислоты с 50-60 %-ным метанольным раствором гексаметилендиамина в смесителе 1. При охлаждении выделяются кристаллы соли АГ, которые осаждаются в промежуточной емкости 2 и отделяются от метилового спирта в центрифуге 3. Затем соль АГ подают в реактор-автоклав 4, в который загружают также уксусную кислоту из расчета 0,2— 0,5 % от массы соли. Соль АГ — белый кристаллический порошок с температурой плавления 190-191°С, нерастворимый в холодном метиловом спирте, но хорошо растворимый в воде.

    Реактор-автоклав представляет собой цилиндрический аппарат объемом 6-10 м3, выполненный из хромоникелевой стали и снабженный рубашкой для обогрева высокотемпературным теплоносителем (динилом или паром). Поликонденсацию проводят в атмосфере азота при постепенном нагреве реакционной смеси до 220°С и давлении 16-17 МПа в течение 1-2 ч, от 220 до 270-280 °С в течение 1-1,5 ч, а затем снижают давление до атмосферного на 1 ч и снова повышают давление до 16-17 МПа. Такие операции проводят несколько раз. При снижении давления выделяющаяся в реакции вода закипает, пары ее удаляются из автоклава, перемешивая расплав полимера. Общая продолжительность процесса поликонденсации составляет 6-8 ч.
    \\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image59.png
    Контроль процесса ведут по количеству выделившейся воды, пары которой конденсируются й холодильнике 5, а конденсат стекает в мерник 6.

    По окончании реакции расплав ПА с помощью сжатого азота через обогреваемую фильеру в виде лент продавливается в ванну 7 с проточной водой, в которой быстро охлаждается, и поступает на измельчение в резательный станок 8. Гранулы полиамида сушат в сушилке 9 струей горячего воздуха и затем подают на упаковку.

    Свойства полигексаметиленадипамида представлены в табл. 18.2.

    \\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image60.png
    \\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image61.png
    1   ...   40   41   42   43   44   45   46   47   48


    написать администратору сайта