Главная страница
Навигация по странице:

  • Влияние внешних условий.

  • Накопление крахмала и других углеводов.

  • Накопление азотистых веществ.

  • Динамика других соединений.

  • Лекции биохимия 3. Лекция Обмен липидов


    Скачать 4.12 Mb.
    НазваниеЛекция Обмен липидов
    АнкорЛекции биохимия 3.doc
    Дата21.12.2017
    Размер4.12 Mb.
    Формат файлаdoc
    Имя файлаЛекции биохимия 3.doc
    ТипЛекция
    #12364
    страница12 из 14
    1   ...   6   7   8   9   10   11   12   13   14

    19. Влияние удобрений на урожайность и качество зерна сои


    Вариант

    Урожай, ц/га

    Содержание в зерне белков, % от сухой массы

    Выход белка, кг/га

    Без удобрений

    15,5

    37,8

    527

    45N

    17,3

    41,8

    651

    45N45P

    18,4

    40,3

    667

    45N45P45K

    19,1

    40,9,

    703



    Таким образом, подбирая эффективные штаммы клубеньковых бактерий и создавая оптимальные условия для симбиотической азотфикации (орошение, известкование почвы, молибденовые удобрения и др.), можно значительно повысить урожайность зернобобовых культур и накопление в их семенах запасных белков. В то же время уровень урожайности и общий сбор белков у зернобобовых растений зависят от внесения фосфорных и калийных удобрений, которые при интенсивной азотфиксации становятся основными факторами повышения урожайности этих культур и улучшения качества зерна.

    МАСЛИЧНЫЕ КУЛЬТУРЫ

    Масличные растения возделывают с целью получения растительных жиров, называемых маслами, которые синтезируются и накапливаются как запасные вещества в семенах. Кроме жиров, ценность семян масличных растений также определяется содержанием в них белков, хорошо сбалансированных по аминокислотному составу, и растворимых в жирах витаминов. Исходя из особенностей химического состава семян масличных культур, видно, что основное направление их хозяйственного использования - получение растительных масел и жмыхов, которые образуются как побочные продукты после экстракции масла и характеризуются высоким содержанием белков (40-50% сухой массы).

    Накопление жиров. Основные запасные вещества семян масличных растений - жиры, или ацилглицерины, содержание которых в семенах льна, конопли, горчицы, подсолнечника составляет 30-50%, а в маке и клещевине достигает 50-60%. В семенах сои, хлопчатника, кориандра количество жира значительно ниже - 17-25%.

    Растительные жиры - богатые энергией продукты и при их окислении высвобождается значительно больше энергии, чем при окислении такой же массы углеводов или белков. Установлено, что энергетическая ценность 1 г жира в среднем составляет 39 кДж, углеводов - 17 кДж, белков - 22-24 кДж. Питательная ценность жиров определяется также содержанием в них полиненасыщенных жирных кислот - линолевой и линоленовой, которые не синтезируются в организме человека и животных и должны поступать с пищей. В связи с этим растительные жиры представляют собой важные источники незаменимых жирных кислот для человека и сельскохозяйственных животных. В маслах льна, конопли, мака, подсолнечника, сои, хлопчатника, арахиса содержание этих кислот достигает 40-80% общего количества жирных кислот.

    Жиры откладываются в ядрах семян, образуя упорядоченные внутриклеточные структуры, называемые  сферосомами . Сферосомы – это сферические частицы диаметром 0,5 мкм, окружённые липопротеиновой мембраной. Кроме жиров, в сферосомах содержатся фосфолипиды, фитин и ферменты, участвующие в гидролизе жиров (во время прорастания семян). Образование структурных компонентов жира - глицерина, насыщенных и ненасыщенных с одной двойной связью жирных кислот - происходит в цитоплазме, а ненасыщенных жирных кислот с двумя и тремя двойными связями и ацилглицеринов - в гладком эндоплазматическом ретикулуме. Синтезируются жиры из углеводов, поступающих в семена из листьев, стеблей и элементов соцветия.

    Вскоре после цветения в завязавшихся семенах довольно интенсивно синтезируются структурные элементы клеток, каталитические белки, крахмал, нуклеиновые кислоты. В этот период в семенах также содержится много растворимых углеводов и небелковых азотистых веществ, а жира очень мало. Интенсивное превращение углеводов в жир начинается после того, как завершается формирование семенных тканей, которое продолжается у большинства масличных культур 2-3 недели.

    Накопление жира сопровождается уменьшением концентрации сахаров, крахмала, пентозанов. О начале интенсивного синтеза жиров можно судить по изменению дыхательного коэффициента, который в этот период значительно повышается. Интенсивный синтез жира продолжается почти до полного созревания семян и заметно снижается лишь в самом конце их созревания. Динамика содержания жиров и углеводов в созревающих семенах масличных культур показана на примере клещевины (рис. 59).

    Степень зрелости семян оценивают по изменению кислотного числа, характеризующего содержание в масле свободных жирных кислот. На первых этапах созревания семян кислотное число обычно составляет 30-40 мг КОН на 1 г масла, что свидетельствует о высоком содержании свободных жирных кислот и низкой скорости синтеза жиров. К концу созревания семян кислотное число понижается до 1,5-2,5.

    В процессе созревания семян изменяется качество масла, которое зависит от состава жирных кислот. Масло из незрелых семян отличается повышенным содержанием насыщенных кислот - пальмитиновой и стеариновой, вследствие чего йодное число такого масла очень низкое. По мере созревания семян усиливается синтез ненасыщенных кислот, и особенно полиненасыщенных - линолевой и линоленовой, в связи с чем, йодное число повышается на 20-30 единиц и более. Так, например, в процессе созревания семян подсолнечника количество пальмитиновой и стеариновой кислот уменьшается от 25-30% до 6-10% общего количества жирных кислот в масле, а содержание линолевой кислоты удваивается и составляет в масле зрелых семян 65-80%. Содержание в масле олеиновой кислоты также снижается.

    В семенах льна в процессе созревания повышается интенсивность синтеза линоленовой кислоты и включение её в состав ацилглицеринов, тогда как количество других кислот в масле уменьшается.

    В семенах масличных культур накапливаются и другие липиды, главным образом фосфолипиды, стероидные липиды (0,1-1 %) и фитин (1-3%), которые при экстракции растворяются в масле. В растительных жирах содержатся также жирорастворимые витамины, особенно много токоферола (витамина Е) - 50-100 мг%. Фосфолипиды, фитин, жирорастворимые витамины - ценные компоненты растительного масла, повышающие его питательную ценность, их содержание в процессе созревания семян существенно повышается.

    При уборке недозрелых семян масличных растений возможен значительный недобор растительных жиров, других липидов, витаминов. Масло, полученное из таких семян, характеризуется низким качеством (низкое йодное и повышенное кислотное число).

    Накопление белков. У большинства масличных культур основные белки семян – глобулины, на их долю приходится 55-70 % от общего количества белков, тогда как альбумины составляют 10-28 %, глютелины 10-15 %. В семенах льна и арахиса больше альбуминов – до 40-50 % общей суммы белков и меньше глобулинов – 30-35 %. В семенах горчицы много содержится глютелинов – 20-30 %, но понижено количество глобулинов (20-40 %).

    В связи с тем, что основную часть белков семян масличных культур составляют глобулины и альбумины, суммарные белки семян хорошо сбалансированы по содержанию незаменимых аминокислот и поэтому имеют высокую биологическую ценность (80-90 %). Общее количество белков в семенах масличных растений 15-30 %. Запасные белки синтезируются в семенах из аминокислот, поступающих из вегетативных органов растений. Механизм синтеза примерно такой же, как у зернобобовых культур.

    На первых этапах созревания семян в основном образуются структурные, каталитические и регуляторные белки, а синтез запасных белков начинается несколько позже, когда заканчивается формирование семенных тканей, и продолжается до полного созревания семян. Концентрация небелковых соединений азота в процессе созревания семян понижается.

    В белковом комплексе семян в процессе их формирования увеличивается концентрация высокомолекулярных белков - глобулинов. У некоторых культур наблюдается накопление глютелинов (в горчице до 30% общего количества белков). Кроме белков, в семенах масличных растений в небольшом количестве содержатся небелковые азотистые вещества – свободные аминокислоты и их амиды, азотистые основания, нуклеиновые кислоты.

    Углеводы. В семенах масличных растений не откладывается крахмал, так как у них основным запасным веществом является жир. Однако в ядрах семян содержится 2-5 % сахаров, значительную часть которых представляет сахароза. Кроме того, в тканях ядер семян имеются структурные углеводы – 2-6 % клетчатки, гемицеллюлоз и пектиновых веществ. Оболочки семян в основном состоят из целлюлозы и гемицеллюлоз, а также пектиновых веществ.

    В целых семенах масличных культур, имеющих более толстую оболочку, количество клетчатки обычно составляет 15-25 % (подсолнечник, конопля, клещевина, хлопчатник, кориандр). У других масличных культур в семенах содержится меньше клетчатки – 5-10 %. Содержание гемицеллюлоз и других углеводов изменяется в довольно значительных пределах – 10-25 %, а в семенах клещевины оно составляет 2-14 %.

    Влияние внешних условий. Во время созревания в семенах масличных растений происходят главным образом два конкурирующих и взаимосвязанных процесса - синтез белков из аминокислот и жиров из углеводов. Жиры содержат в своем составе значительно больше воды, чем белки, поэтому при дефиците влаги синтез этих веществ ослабляется, в результате чего в семенах увеличивается концентрация белковых веществ. С другой стороны, при меньшем поступлении световой энергии сильнее замедляется синтез белков как более энергоёмкий процесс. Таким образом, между процессами синтеза белков и жиров в семенах масличных растений существует примерно такая же связь, как между биосинтезом белков и углеводов в зерне злаковых и зернобобовых культур. У масличных культур эта связь выражена более заметно, так как образующиеся в их семенах жиры содержат больше воды, чем углеводы.

    При возрастании интенсивности солнечной радиации повышается температура окружающей среды и усиливается испарение воды, создавая определённый дефицит влагообеспеченности растений, вследствие чего ослабляются процессы синтеза жиров, а накопление белков возрастает. Высокий уровень влагообеспеченности растений, как правило, наблюдается при более частых осадках, когда снижается интенсивность солнечной радиации и температура окружающей среды. В таких условиях в листьях усиливается синтез углеводов, а в семенах жиров.

    Аналогичные изменения биохимических процессов в созревающих семенах масличных культур наблюдаются под влиянием климатических факторов. В географических опытах установлено, что при культивировании масличных растений в северо-западных регионах нашей страны в условиях достаточного увлажнения и умеренных температур в их семенах больше накапливается жиров, чем на юге и юго-востоке, где в условиях более жаркого и сухого климата усиливается синтез белков. Выяснено, что в зависимости от климата и изменения погодных условий содержание жиров в семенах масличных растений может изменяться на 5-15%.

    Как показывают результаты опыта, при улучшении влагообеспеченности растений сбор семян подсолнечника увеличивался в два с половиной раза, накопление жиров - на 11%, тогда как содержание белков существенно понижалось.

    Условия выращивания оказывают влияние на качественный состав масла и накопление в семенах отдельных групп запасных белков. При возделывании масличных растений в условиях повышенной влажности и умеренных температур в их семенах больше образуется полиненасыщенных жирных кислот и водорастворимых белков, тогда как при культивировании этих растений в условиях повышенной температуры и меньшей влагообеспеченности понижается количество непредельных кислот в масле и усиливается синтез запасных глобулинов.

    С повышением температуры во время созревания семян усиливаются процессы дыхания, на которые затрачивается больше кислорода, участвующего в синтезе ненасыщенных жирных кислот, в результате чего меньше образуется этих кислот и включается в состав жира, по этому йодное число жира снижается. Недостаток кислорода также связан с понижением его растворимости в физиологической среде при повышенной температуре, а также закрытием устьиц. В зависимости от условий влагообеспеченности растений и температуры окружающей среды йодное число масла может изменяться на 10-25 единиц.

    Сопоставление многочисленных данных, полученных в опытах по выяснению действия разных факторов на синтез запасных веществ в семенах масличных растений, показывает, что условия выращивания, благоприятные для накопления большего количества жира в семенах, улучшают и качество масла, стимулируя интенсивный синтез полиненасыщенных жирных кислот. Выяснение действия факторов внешней среды на синтез жиров в семенах масличных культур имеет важное практическое значение, так как на основе полученных данных разрабатываются приёмы выращивания этих растений, позволяющие снижать отрицательное влияние неблагоприятных погодных условий или особенностей климата данного региона на качество семян.

    Легче всего поддается регулированию режим влагообеспеченности растений в засушливых условиях путём применения орошения. При поливе наряду со значительным повышением урожая масличных растений (в 1.5-2 раза) увеличивается накопление в семенах жиров (на 2-10%), а в составе жира возрастает количество непредельных кислот, в результате чего йодное число повышается на 5-15 единиц.

    Оптимизация питания. Многие масличные растения во время формирования и налива семян интенсивно поглощают из почвы фосфор и калий (до 70% от общего их поступления в растения), при недостатке этих элементов снижается накопление жиров. Поэтому фосфорные и калийные удобрения являются важными факторами повышения масличности семян. При их внесении в достаточных дозах, обеспечивающих потребности растений в фосфоре и калии в репродуктивный период развития, урожаи масличных культур повышаются на 3-5 и более ц/га и в семенах увеличивается содержание жиров на 2-3%. При этом в масле возрастает количество полиненасыщенных жирных кислот, в результате улучшается питательная и техническая ценность масла.

    Интенсивное поглощение азота масличными культурами наблюдается в фазы их активного роста, когда происходит формирование корневой системы, фотосинтетического аппарата и элементов структуры урожая, а в последующий период развития растений их потребность в азоте резко снижается. Более того, усиленное азотное питание масличных растений во время формирования и налива семян стимулирует интенсивный синтез запасных белков, вследствие чего снижается масличность семян. При недостатке азота наблюдается слабый рост растений, в связи, с чем закладывается низкий урожай семян с невысоким содержанием жиров. Следовательно, на посевах масличных культур азотные удобрения необходимо вносить в дозах, обеспечивающих оптимальный уровень питания азотом в первой половине вегетации растений, в период их интенсивного роста.

    Влияние удобрений на урожай и качество семян масличных растений можно показать на примере подсолнечника, который выращивали на карбонатном черноземе в Ставропольском крае (таб. 22).

    22. Действие удобрений на урожайность и качество семян подсолнечника


    Вариант

    Урожай семян,

    Ц/га

    Содержание

    жира, %

    Выход жира,

    ц/га

    Без удобрений

    20,7

    44,8

    9,3

    60Р

    24,2

    46,9

    11,3

    60N60Р

    25,3

    46,0

    11,6

    60N60Р20К

    27,0

    45,4

    12,3



    В этом опыте наиболее оптимально была подобрана доза фосфорного удобрения, при внесении которого повышалась как урожайность, так и масличность семян подсолнечника. От внесения азота несколько повышался сбор семян, но уменьшалось количество жира в семенах, в результате выход жира с единицы площади почти не изменялся. Доза калийного удобрения была недостаточной для обеспечения оптимального уровня питания калием в период налива семян, в результате чего масличность семян снижалась, однако общий выход жира увеличивался вследствие повышения урожая подсолнечника.

    При внесении удобрений можно не только повысить накопление жира в семенах, но и улучшить качественный состав масла. В опытах, где проводились наблюдения за изменением состава и качества жира в семенах в зависимости от условий питания растений, выявлена общая закономерность, характерная для всех масличных культур: если в результате действия удобрений (или других факторов) увеличивается накопление в семенах жиров, то оно сопровождается повышением степени непредельности жира, связанного с уменьшением в нём количества насыщенных жирных кислот и кислот с одной двойной связью и возрастанием содержания полиненасыщенных жирных кислот - линолевой и линоленовой.

    Ослабление синтеза этих кислот при высоком уровне азотного питания вызвано усилением потребления восстановленных динуклеотидов НАДФ×Н для синтеза азотистых веществ, в результате чего меньше их вкдючается в реакции образования ненасыщенных жирных кислот. Поэтому, правильно регулируя азотное, фосфорное и калийное питание масличных растений, можно создавать оптимальные условия для накопления в семенах высококачественного растительного масла.
    КАРТОФЕЛЬ

    Хозяйственная ценность картофеля определяется довольно высо­ким содержанием в его клубнях крахмала, белков, аскорбиновой кислоты и других веществ. На кулинарные свойства картофеля также очень сильное влияние оказывают сахара и небелковые азотистые ве­щества. В связи с тем, что картофель даёт высокий выход полезных веществ с 1 га, эта культура является важным источником возобнов­ляемых природных ресурсов, используемых в качестве сырья для пище­вой и биотехнологической промышленности.

    Накопление крахмала и других углеводов. В сырых клубнях кар­тофеля содержание крахмала чаще всего составляет 12-18%, и он представлен двумя полисахаридами - амилозой и амилопектином. В среднем на долю амилозы в клубнях картофеля приходится 20-25% об­щего количества крахмала.

    Полисахариды крахмала синтезируются в клубнях из углеводов, поступающих по флоэме из надземных органов, и откладываются в клетках запасающей паренхимы в виде крахмальных зёрен, большая часть которых сконцентрирована в камбиальном слое и внешней части сердцевины, значительно меньше их содержится во внутренних слоях сердцевины.

    Величина крахмальных зёрен оказывает влияние на кулинарные свойства картофеля. Установлено, что если крахмальные зёрна имеют диаметр менее 20 мкм, то они при варке картофеля сильнее набухают, вызывая разрыв клеточных стенок, в результате клубни приобретают полужидкую консистенцию.

    В начале клубнеобразования, когда происходит интенсивное фор­мирование структурных элементов клеток, скорость синтеза крахмала невелика и его содержание в молодых клубнях не превышает 8-10%. Однако в период интенсивного клубнеобразования синтез крахмала заметно усиливается и его концентрация в клубнях возрастает до 15-20% (рис. 60). На завершающих этапах созревания, когда происходит отмира­ние листьев, количество крахмала в клубнях картофеля может пони­жаться вследствие прекращения притока углеводов из надземных орга­нов и их расхода на дыхание.

    В зависимости от интенсивности синтеза крахмала изменяется содержание сахаров, в молодых клубнях их концентрация в несколько раз выше, чем в зрелых.

    Количество сахаров заметно повышается при хранении клубней, особенно при пониженной температуре, когда процессы образования крахмала ингибируются сильнее, чем его распад, в результате значи­тельная часть крахмала превращается в сахара и клубни приобретают сладкий вкус.

    Повышение концентрации сахаров в клубнях картофеля ухудшает их технологические свойства, так как при тепловой обработке клуб­ней сахара взаимодействуют с аминокислота­ми, вследствие чего образуются тёмноокрашенные продукты - меланои­дины, ухудшающие качество получаемых пищевых продуктов. В целях предотвращения повышения концентрации сахаров рекомендуется хране­ние клубней картофеля при температуре не ниже 3-40С. При более высокой температуре усиливается дыхание клубней и жизнедеятель­ность микроорганизмов, что приводит к быстрой порче картофеля.

    Для закладки на хранение, а также переработки в различные пи­щевые продукты следует использовать только зрелые клубни, имеющие более низкую концентрацию сахаров.

    В полностью вызревших и не подвергнутых хранению клубнях картофеля концентрация сахаров обычно не превышает 0,6-0,9 %, а в процессе хранения может возрастать до 3-4 %. Более половины содержащихся в клубнях сахаров представлены сахарозой.

    В кожуре клубней картофеля откладывается много пектиновых веществ и клетчатки. Среднее содержание клетчатки в клубнях составляет около 1 %, пектиновых веществ 0,5-0,7 %. Пектиновые вещества клубней картофеля на 80-90 % представлены протопектинами.

    Накопление азотистых веществ. Большая часть азотистых веществ клубней картофеля представлена белками, тогда как на долю небелко­вых форм азота обычно приходится 30-40%. Больше азотистых веществ накапливается в кожуре и сердцевине клубня и значительно меньше в камбиальном слое и периферийной части сердцевины.

    Белки клубней на 50-65% состоят из запасных форм - глобули­нов, тогда как альбумины составляют 20-30% и глютелины 15-20% об­щего количества белков. Они довольно хорошо сбалансированы по составу незаменимых аминокислот, вследствие чего имеют высокую би­ологическую ценность (80-85% по сравнению с белками молока или яйца).

    Небелковые азотистые вещества клубней картофеля примерно на 90% представлены свободными аминокислотами и их амидами, однако сбалансированность этой фракции по содержанию незаменимых амино­кислот хуже, чем белков. Поэтому в целях улучшения качества клуб­ней при выращивании картофеля желательно добиваться увеличения до­ли белков и снижения концентрации свободных аминокислот, тем бо­лее, что, как указано выше, свободные аминокислоты участвуют в ре­акциях меланоидинообразования, снижающих качество пищевых продук­тов, получаемых при переработке картофеля.

    Свободные аминокислоты также могут быть причиной потемнения тканей клубня в результате окисления кислородом воздуха тирозина и фенилаланина под действием фермента тирозиназы. Образующиеся продукты - меланины - представляют со­бой вещества чёрного цвета.

    Интенсивность синтеза белков в процессе клубнеобразования постепенно повышается и существенно возрастает на завершающих эта­пах их созревания. Синтезируются белки из аминокислот, поступающих в клетки клубней из корней и листьев растений.

    Концентрация в клубнях белков оказывает заметное влияние на формирование кулинарных свойств картофеля, при этом важное значе­ние имеет соотношение белков и крахмала. При чрезмерном повышении белковости клубней они после варки имеют очень вязкую консистен­цию, тогда как при слишком высокой концентрации крахмала клубни при варке растрескиваются. Выяснено, что хорошие кулинарные ка­чества имеет картофель, у которого отношение крахмал/белки нахо­дится в пределах 12-16.

    На практике для оценки количества белков и общего содержания азотистых веществ в клубнях картофеля используется показатель - сырой протеин. Среднее содержание сырого протеина в картофеле обычно составляет 1,5-2% сырой массы клубней.

    Динамика других соединений. Кроме белков и углеводов пита­тельную и кормовую ценность клубней картофеля определяют также ор­ганические кислоты, липиды, витамины, гликоалкалоиды.

    Содержание органических кислот в картофеле достигает 1-1,5% сырой массы клубней, преобладающими являются лимонная и яблочная. В процессе созревания клубней концентрация в них кислот постепенно понижается.

    Количество липидов в клубнях в среднем составляет 0,1%, боль­ше их накапливается в перидерме и меньше в сердцевине. В составе липидов ненасыщенные и насыщенные кислоты находятся примерно по­ровну, однако при хранении клубней доля ненасыщенных жирных кислот возрастает, что улучшает биологическую ценность липи­дов. В процессе созревания количество липидов в клубнях почти не изменяется.

    Картофель - важный источник аскорбиновой кислоты, содержание которой в зрелых клубнях составляет 15-25 мг%, а в молодых может достигать 40 мг%. В процессе созревания клубней содержание в них аскорбиновой кислоты снижается, увеличивается доля её дегидрофор­мы. Особенно заметно понижается концентрация этого витамина при хранении (за зимний период в 2-3 раза).

    Содержание в картофеле других витаминов изменяется меньше и в среднем составляет, мг%: В1 и В2 - 0,05-0,1, В6 - 0,2-0,9, РР - 0.5-1.5, пантотеновой кислоты - 0,2-0,4, К1- 0,05-0,1, фолиевой кислоты - 0,05-0,1.

    Пищевая пригодность клубней картофеля зависит от содержания в них гликоалкалоидов, молекулы которых построены из остатков мо­носахаридов (глюкозы, галактозы, рамнозы) и стероидного алкалоида соланидина (см. стр. …). В зависимости от состава сахаров различают две группы гликоалкалоидов - соланины и чаконины, обладающие токсическим действием на организм человека и животных.

    Большая часть гликоалкалоидов локализована в кожуре и значи­тельно меньше их содержится в запасающей ткани. При созревании клубней количество гликоалкалоидов в них понижается в 2-3 раза и в зрелых клубнях не превышает 4-5 мг%. Картофель, содержащий свыше 20 мг% соланинов и чаконинов, не пригоден для употребления в пищу и на корм скоту. Концентрация гликоалкалоидов резко возрастает при позелении клубней.

    Влияние внешних условий. В зависимости от условий выращивания содержание крахмала и азотистых веществ в клубнях картофеля может изменяться в 1.5-2 раза. Как уже отмечалось в предшествующих раз­делах, при относительно низкой влажности и высокой температуре в растениях усиливается синтез азотистых веществ и снижается накоп­ление углеводов, что характерно и для картофеля. Однако в таких условиях также возрастает доля крахмала в общем углеводном комп­лексе клубней.

    При повышении влажности и снижении среднесуточных температур интенсивность синтеза крахмала в картофеле понижается, а концент­рация сахаров возрастает, уменьшается также содержание сырого протеина и доля белковых веществ. Вместе с тем недостаток влаги в пе­риод клубнеобразования, хотя и повышает накопление в клубнях крах­мала, значительно понижает урожайность картофеля, поэтому общий выход крахмала с 1 га уменьшается. В условиях переувлажнения, как правило, снижается как урожайность картофеля, так и накопление в клубнях крахмала.

    Примерно такие же изменения химического состава картофеля наблюдаются под воздействием природно-климатических факторов. В северных и северо-западных регионах, отличающихся повышенной влаж­ностью и более низкими температурами, в клубнях картофеля меньше накапливается крахмала и белков, но возрастает концентрация саха­ров и свободных аминокислот. При продвижении на юг накопление в клубнях крахмала и белков увеличивается вследствие того, что воз­растает интенсивность солнечной радиации, вызывая снижение влаж­ности и повышение среднесуточных температур.

    Под воздействием внешних факторов происходят существенные из­менения в углеводном и белковом комплексе картофеля. При снижении влажности и повышении температуры в составе крахмала возрастает доля амилопектина, а в составе белков - глобулинов.

    Оптимизация питания. Картофель предъявляет повышенные требо­вания к режиму питания. Для получения высоких урожаев этой культу­ры с оптимальным химическим составом клубней необходимо учитывать ряд особенностей, связанных с действием элементов питания на раз­витие растений и процесс клубнеобразования.

    Как установлено, азот стимулирует интенсивный синтез азо­тистых веществ и образование вегетативной массы, однако удлиняет сроки вегетации растений и задерживает образование клубней. При усилении азотного питания в клубнях повышается содержание азотистых веществ и снижается накопление крахмала.

    Фосфор ускоряет развитие растений и процесс клубнеобразова­ния, улучшает кулинарные качества картофеля и повышает накопление в клубнях крахмала и аскорбиновой кислоты.

    Калий активирует процессы углеводного обмена и превращение сахаров в крахмал, в результате чего в клубнях повышается накопле­ние крахмала. В то же время при внесении хлористых калийных удоб­рений может происходить значительное ухудшение качества клубней, связанное с действием хлора, являющегося активатором гидролити­ческих ферментов, которые катализируют распад крахмала.

    23. Влияние различных форм калийных удобрений на урожай

    и качество клубней картофеля

    Вариант опыта

    Урожай, т/га

    Крахмал, %

    Сбор крахмала,

    ц/га

    Без удобрений

    19,6

    13,2

    25,8

    N90P60

    21,1

    13,3

    28,1

    N90P60K60 (KCl)

    28,4

    12,4

    35,2

    N90P60K60 (K2SO4)

    27,7

    13,4

    37,1

    N90P60K60

    (30%-ная калийная

    соль)

    26,5

    11,6

    30,8

    N90P60K60

    (сильвинит)

    25,4

    11,8

    29,9


    В опыте Панникова В.Д и Минеева В,Г., проведенном на дерново-подзолистой почве было показано, что увеличение содержания хлора в удобрении несколько снижало урожай клубней картофеля, в результате сбор крахмала с единицы площади понижался на 17-19 % по сравнению с оптимальным вариантом, в котором вносили в качестве удобрения сульфат калия (табл. 23).

    Следовательно, при выращивании картофеля в первой половине вегетации в целях усиления ростовых процессов необходимо обеспечи­вать высокий уровень как азотного, так и фосфорно-калийного пита­ния, а в период клубнеобразования уровень азотного питания должен быть существенно снижен.

    При культивировании кормового картофеля одной из важных задач является повышение содержания в клубнях белковых веществ, в связи с чем, необходимо усиление режима азотного питания. Наряду с этим в целях повышения содержания белков в клубнях картофеля проводятся молекулярно-биохимические исследования, направленные на изучение генетической системы растений картофеля и выявления возможности регуляторных сдвигов, приводящих к усилению синтеза запасных бел­ков.
    КОРНЕПЛОДЫ

    Характерная особенность корнеплодов - способность накапливать в клетках запасающих тканей большое количество сахаров, которые главным образом и определяют их хозяйственную ценность. При оценке качества сахарной свеклы, кроме сахаров, учитывается также содержание небелковых азотистых веществ (вредный азот) и солей калия и натрия, снижающих выход сахара при переработке корнеплодов. Питательная ценность кормовых и столовых корнеплодов зависит также от содержания в них полисахаридов, белков и небелковых азотистых соединений, витаминов минеральных веществ.

    Накопление углеводов. Углеводный комплекс корнеплодов на 70-80% представлен легкорастворимыми формами - сахарозой и моносахаридами, которые обычно называют сахарами. Больше всего сахаров содержится в корнеплодах сахарной свёклы - 16-20% и основную часть их (80-90%) составляет сахароза. Общее количество моносахаридов (глюкозы и фруктозы) не превышает 1% от сырой массы корнеплода. Кроме сахарозы, в корнеплодах сахарной свёклы также образуется небольшое количество других олигосахаридов - мальтозы и рафинозы.

    В корнеплодах кормовой и столовой свёклы, моркови, турнепса среднее содержание сахаров - 7-12%, в репе, редисе и редьке - 5-8%. У столовой и кормовой свёклы, турнепса состав сахаров примерно такой же, как у сахарной свёклы, а в корнеплодах репы большая часть сахаров представлена моносахаридами (80%). Много моносахаридов содержится и в моркови.

    Сахара в корнеплодах в наибольшем количестве накапливаются в клетках запасающей ткани, концентрируясь в основном в вакуолях, а в других тканях их содержание существенно ниже. В корнеплодах свёклы максимальная концентрация сахара наблюдается в наиболее широкой части корня (шейке) между периферической и центральной зонами. Минимальное количество сахаров содержится в верхней части корнеплода - головке. В корнеплодах моркови больше сахаров накапливается в периферийных тканях и значительно меньше - в центральной части.

    Накопление сахаров в корнеплодах определяется двумя главными факторами - поступлением углеводов из листьев и интенсивностью синтеза сахарозы в корнях. Важным условием для процессов сахаронакопления в корнеплодах является развитие фотосинтетического аппарата растений. При создании мощного ассимиляционного аппарата в листьях образуется много растворимых углеводов и крахмала, которые, превращаясь в транспортные формы, обеспечивают постоянный приток моносахаридов и сахарозы в корнеплоды.

    Синтез сахарозы из моносахаридов в запасающих тканях у разных корнеплодов происходит с неодинаковой скоростью. Наиболее интенсивный он у сахарной свёклы и очень слабый в корнеплодах репы. Накопление сахаров зависит также от продолжительности вегетации растений, обычно раннеспелые корнеплоды характеризуются низким содержанием сахара.

    Динамика содержания сахаров у разных корнеплодов также неодинакова. У сахарной свёклы в молодых корнеплодах содержится значительно меньше сахаров, чем в зрелых, и сахара в основном представлены моносахаридами, поэтому отношение количества сахарозы к содержанию моносахаридов обычно находится на очень низком уровне.

    В процессе роста и развития корнеплодов сахарной свёклы общее содержание сахаров в них увеличивается в 2.5-3 раза (рис. 61), при этом происходит значительное усиление биосинтетических реакций, связанных с синтезом сахарозы, в результате чего отношение сахарозы к моносахаридам во время созревания корнеплодов постоянно увеличивается. При уборке недозрелых корнеплодов сахарной свеклы отмечается значительный недобор продовольственного сахара.

    У кормовых и столовых корнеплодов в динамике содержания сахаров в процессе их роста и развития наблюдаются примерно такие же изменения, как и у сахарной свёклы, однако параметры этих изменений значительно меньше. Например, содержание сахаров в молодых и зрелых корнеплодах моркови и редьки различается на 1-2%, у кормовой и столовой свёклы, турнепса - на 3-5%. При длительном хранении часть сахаров в корнеплодах используется на дыхание, вследствие чего общая их концентрация уменьшается.

    Из полисахаридов в корнеплодах довольно много содержится пектиновых веществ (1,5-2,5% массы корня) и гемицеллюлоз (до 1.5%), в моркови - крахмала (до 1%). Эти соединения относятся к легкоусвояемым формам углеводов и поэтому повышают питательную ценность корнеплодов. Клетчатки больше содержится в незрелых корнеплодах, в которых происходит интенсивное формирование структурных элементов запасающих и других тканей, а к концу созревания корнеплодов её концентрация снижается.

    В полностью сформировавшихся корнеплодах свёклы содержание клетчатки колеблется в пределах 0.5-1%, в моркови - 1.5-2%. Много клетчатки образуется в корнеплодах при засухе и недостатке питательных элементов, а также у цветущих растений, в результате резко понижается переваримость всех органических веществ корнеплодов и, следовательно, ухудшается их питательная ценность.

    Азотистые вещества. Азотистые вещества корнеплодов - белки, свободные аминокислоты, амиды, нуклеиновые кислоты и продукты их распада. Белки составляют 40-60% общего количества азотистых веществ, содержащихся в корнеплодах, свободные аминокислоты и амиды - 30-40%. Белки корнеплодов на 60-70% представлены легкорастворимыми формами - альбуминами и глобулинами, хорошо сбалансированными по содержанию незаменимых аминокислот. Фракция свободных аминокислот также содержит незаменимые аминокислоты и поэтому повышает биологическую ценность азотистых веществ корнеплодов.

    Содержание белков и небелковых азотистых веществ изменяется в процессе роста и созревания корнеплодов. В молодых корнеплодах содержится больше азотистых веществ, чем в зрелых. Особенно много белков и небелковых азотистых соединений наблюдается в корнях перед началом интенсивного сахаронакопления, к концу созревания концентрация азотистых веществ в корнеплодах снижается в 1.5-2 раза.

    Для оценки питательных свойств корнеплодов обычно определяют общее содержание азотистых веществ в пересчёте на белки и этот показатель называют "сырым протеином" или "сырым белком". Для того чтобы получить сырой протеин определяют содержание общего азота и умножают его на коэффициент пересчета - 6.25. В зрелых корнеплодах количество сырого протеина составляет 1-1.5%.

    Чтобы повысить сбалансированность кормовых корнеплодов по содержанию белков проводится селекционная работа, направленная на получение генотипов, отличающихся повышенным накоплением в корнях полноценных белков, а также разрабатываются технологии выращивания этих культур, обеспечивающие изменение биосинтетических процессов в корнеплодах в направлении более интенсивного синтеза белков. При культивировании сахарной свёклы повышенное содержание азотистых веществ, и особенно аминокислот и бетаина, не допускается, так как они снижают выход сахара в процессе промышленной переработки корнеплодов.

    Липиды и витамины. Большинство корнеплодов содержат в своих тканях 0,1-0,2 % липидов, в моркови 0,2-0,3 %. Богаче липидами периферические части корнеплодов. Липидный комплекс корнеплодов представлен структурными липидами и ацилглицеринами. В составе ацилглицеринов корнеплодов повышено содержание ненасыщенных жирных кислот, поэтому образующиеся из них жиры характеризуются низкими йодными числами.

    Все корнеплоды являются важными источниками аскорбиновой кислоты для человека и сельскохозяйственных животных. В редисе, репе и редьке её содержание достигает 20-40 мг %, в моркови и столовой свёкле - 5-20 мг %, в кормовой свёкле и турнепсе - 3-6 мг % от массы корней. В корнеплодах моркови много синтезируется каротина (провитамина А) - 6-8 мг %,. В кормовой свёкле и турнепсе количество каротина значительно меньше - 2-5 мг %. В корнеплодах содержатся другие витамины: тиамин, рибофлавин, пиридоксин - по 0.1-0.2 мг %, никотиновая кислота – 0,5-2 мг %, пантотеновая кислота - 0.1-0.5 мг %, фолиевая кислота - 0.1-2 мг % и цитрин 30-50 мг %.

    Влияние внешних условий. В корнеплодах постоянно происходят два основных процесса, определяющих ход биохимических превращений при их созревании, - синтез из поступающих ассимилятов, с одной стороны, азотистых веществ, а с другой - сахарозы и полисахаридов. Как уже указывалось ранее, синтез азотистых веществ в растениях усиливается при повышении интенсивности солнечной радиации и дефиците влаги. Такая закономерность наблюдается и при выращивании корнеплодов; в условиях низкой влагообеспеченности растений в сухом веществе корнеплодов увеличивается доля азотистых веществ.

    Концентрация в корнеплодах сахаров при дефиците влаги также возрастает, но это происходит вследствие понижения их обводнённости и повышения содержания сухого вещества, тогда как в пересчёте на сухую массу количество сахаров почти не изменяется или даже снижается. Условия увлажнения очень сильно влияют на рост растений и формирование урожая корнеплодов, в результате чего может изменяться сбор сахара с единицы площади. В опытах показано, что как при низкой, так и повышенной влажности почвы резко ухудшается рост растений и, как следствие, снижается урожай корнеплодов и выход сахара с 1 га. Поэтому при культивировании корнеплодов очень важно обеспечивать оптимальный режим влагообеспеченности растений – при засухе и в зонах недостаточного увлажнения это достигается с помощью орошения.

    Оптимизация питания. Накопление в корнеплодах сахаров зависит от работы фотосинтетического аппарата листьев, для формирования которого растения потребляют из почвы значительное количество питательных веществ, поэтому недостаток любого элемента в этот период замедляет рост растений, а в конечном итоге снижает урожай и очень часто накопление сахаров в корнеплодах.

    После образования корнеплодов потребность растений в пита- тельных элементах существенно изменяется. Как было установлено, в процессе сахаронакопления важную роль играют фосфор и калий, а поступление в корнеплоды азота должно быть снижено, так как он усиливает синтез азотистых веществ. Поэтому при внесении фосфорных и калийных удобрений сахаристость корнеплодов повышается на 1-2% и в них уменьшается количество небелковых азотистых соединений, что очень важно при возделывании сахарной свеклы, у которой эти вещества снижают выход сахара при её переработке. Увеличение потерь сахара при переработке корнеплодов может также наблюдаться при внесении чрезмерно высоких доз калийных удобрений, вызывающих повышение в корнеплодах концентрации растворимых щелочных солей.

    Избыточные дозы азотных удобрений повышают содержание в корнеплодах азотистых веществ и потери сахара при их переработке, кроме того снижается сахаристость корней. Действие удобрений на накопление сахаров в корнеплодах показано в одном из опытов с сахарной свёклой при выращивании её на выщелоченных черноземах Центрально-чернозёмной зоны (табл. 24).

    При внесении высоких доз азотных удобрений в корнеплоды поступает много минерального азота, в основном в нитратной форме, вследствие чего концентрация нитратов может превысить допустимый уровень. Как известно, нитраты, восстанавливаясь до нитритов, способны инактивировать гемоглобин, переводя содержащееся в нём железо в неактивное трехвалентное состояние, вследствие чего изменённый гемоглобин уже не может функционировать как переносчик кислорода. Считается, что концентрации нитратов, превышающие 0,1-0,2% азота NО3  на сухую массу корма, токсичны для сельскохозяйственных животных. Поэтому корнеплоды с повышенным содержанием нитратов не могут быть использованы на пищевые или кормовые цели.
    1   ...   6   7   8   9   10   11   12   13   14


    написать администратору сайта