Фатыхов М.А. Лекции по механикe. Министерство образования и науки
Скачать 3.22 Mb.
|
Движение каждой точки описывается вторым законом Ньютона:, , (5.13) где – импульсы точек с массами . Сложив эти два уравнения, получим: (5.14) Согласно третьему закону Ньютона, внутренние силы попарно равны и противоположны, т.е. . Поэтому в формуле (5.14) сумма внутренних сил обращается в нуль. С другой стороны, по определению – импульс системы. Таким образом, (5.15) Легко видеть, что в случае произвольного числа nматериальных точек в левой части всегда будет производная полного импульса системы, а в правой части – сумма всех внешних сил. Поэтому в общем случае имеем , (5.16) т.е. производная по времени импульса системы материальных точек равна сумме всех внешних сил, действующих на точки системы. Уравнение (5.16) называют законом изменения импульса системы материальных точек или теоремой о движении центра масс. Согласно этой теореме центр масс движется как материальная точка, на которую действует сила, равная геометрической сумме всех внешних сил, действующих на систему. Примером может служить движение снаряда по параболе в безвоздушном пространстве. Если в какой-либо момент времени снаряд разорвется на мелкие осколки, то эти осколки под действием внутренних сил будут разлетаться в разные стороны. Однако центр масс осколков и газов, образовавшихся при взрыве, будет продолжать свое движение по параболической траектории, как если бы никакого взрыва не было. Как видно из уравнения (5.16), изменение суммарного импульса определяется равнодействующей всех внешних сил, действующих на систему. В связи с этим рассмотрим ряд важных следствий, вытекающих из уравнения (5.16). 1. Рассмотрим систему материальных точек, которая не подвергается воздействию внешних сил. Такая система называется замкнутой. В этом случае правая часть уравнения (5.16) в любой момент времени равна нулю. Тогда (5.17) Это значит, что (5.18) Уравнение (5.18) называется законом сохранения импульса: полный импульс всех тел замкнутой системы сохраняется во времени. Можно также показать, что при выполнении условия (5.17) центр масс замкнутой системы движется равномерно и прямолинейно.
Примерами действия закона сохранения импульса могут служить отдача при стрельбе из огнестрельного оружия, реактивное движение, перемещение осьминогов и т.п. Закон сохранения импульса справедлив не только в классической механике, хотя он получен как следствие законов Ньютона. Эксперименты показывают, что он выполняется и для замкнутых систем микрочастиц (они подчиняются законам квантовой механики). Этот закон носит универсальный характер, т.е. закон сохранения импульса – фундаментальный закон природы. В природе реактивное движение используется некоторыми живыми организмами. Например, кальмары, спруты, медузы и некоторые двухстворчатые моллюски передвигаются посредством отдачи воды, выбрасываемой ими из особых полостей тела. При этом кальмары развивают большую скорость движения – 70 км/час. Своеобразным примером реактивного движения является «бешеный огурец» – растение южного Крыма. Внутри созревшего плода этого растения находится жидкость под повышенным давлением. Оторванный от стебля «бешеный огурец» вырывается из рук и отлетает в сторону за счет отдачи струи жидкости, выбрасываемой из отверстия, образующегося в месте крепления к плодоножке. 3. Движение тел с переменной массой. Реактивное движение Выведем уравнение движения материальной точки с переменной массой на примере движения ракеты. Принцип действия ракеты заключается в следующем. Ракета с большой скоростью выбрасывает вещество (газы), воздействуя на него с огромной силой. Выбрасываемое вещество той же силой, но противоположно направленной, в свою очередь действует на ракету и сообщает ей ускорение в противоположном направлении. Если нет внешних сил, то ракета вместе с выброшенным веществом является замкнутой системой. Импульс такой системы не может меняться во времени. Пусть – масса ракеты в произвольный момент времени , а – ее скорость в тот же момент. Количество движения ракеты в этот момент времени будет . Спустя время масса и скорость ракеты получат приращения. Заметим, что величина отрицательна. Количество движения ракеты станет равным . Обозначим через массу газов, образовавшихся за время , а через – их скорость. Тогда количество движения газов, образовавшихся за время равно . Из современной формулировки второго закона Ньютона имеем, что , где – геометрическая сумма всех внешних сил, действующих на ракету. Таким образом, (5.19) Раскрывая скобки и учитывая, что и – малые величины за время , можно отбросить произведение как бесконечно малую высшего порядка. Обозначим через скорость истечения газов относительно ракеты, которую называют скоростью газовой струи ракеты. Кроме того, из закона сохранения массы следует, что . С учетом этих замечаний выражение (5.19) преобразуется к виду . (5.20) Разделим это выражение на и из (5.20) получим (5.21) По форме уравнение (5.21) совпадает с уравнением, выражающим второй закон Ньютона. Однако масса тела здесь не постоянна, а меняется во времени из-за потери вещества. Кроме того, в правой части выражение имеет смысл дополнительной внешней силы. Она называется реактивной силой и имеет значение силы, с которой действуют на ракету вытекающие из нее газы. Уравнение (5.21) впервые было получено русским механиком И.В.Мещерским и называется уравнением Мещерского или уравнением движения точки с переменной массой. Применим уравнение (5.21) к движению ракеты, на которую не действуют никакие внешние силы. Полагая , получим (5.22) Предположим, что ракета движется прямолинейно в направлении, противоположном скорости газовой струи . За положительное направление примем направление полета. Тогда в скалярной форме уравнение (5.22) примет вид . Следовательно, (5.23) Скорость газовой струи может меняться во время полета. Однако для простоты мы примем, что она постоянна. В этом случае Значение постоянной интегрирования С определяется начальными условиями. Допустим, что в начальный момент времени скорость ракеты равна нулю, а ее масса равна . Тогда предыдущее уравнение дает откуда Следовательно, (5.24) или (5.25) Формула (5.25) называется формулой Циолковского. Формула Циолковского позволяет рассчитать запас топлива, необходимый для сообщения ракете определенной скорости. Она показывает, что:
Уравнение Мещерского и формула Циолковского получены для нерелятивистских движений, т.е. для случаев, когда скорости и малы по сравнению со скоростью света. 4. Задача двух тел. Приведенная масса Рассмотрим замкнутую систему, состоящую из двух взаимодействующих материальных точек с массами и (рис.5.2). Уравнения движения этих точек можно записать в виде , (5.30)
По третьему закону Ньютона . Вычитая из одного уравнения другое, находим Это уравнение описывает движение одной материальной точки относительно другой, так как разность есть радиус-вектор, проведенный от первой точки ко второй. Он однозначно определяет положение второй точки относительно первой. Введем обозначение или , (5.31) которое называется приведенной массой. Тогда предыдущее уравнение перейдет к виду , (5.32) что формально аналогично второму уравнению Ньютона. Понятие приведенной массы глубокого физического смысла не имеет. Введение этого понятия позволяет определить относительное движение одной материальной точки относительно другой в ее силовом поле. Контрольные вопросы
Лекция №6. Законы сохранения Для замкнутой системы тел остаются постоянными три физические величины: энергия, импульс и момент импульса. Соответственно имеются три закона сохранения: закон сохранения энергии, закон сохранения импульса и закон сохранения момента импульса. Второй закон – закон сохранения импульса изучили в предыдущем разделе. Настоящий раздел посвящен рассмотрению остальных двух законов сохранения в механике. 1. Работа Понятия работы и энергии широко используются в нашей повседневной жизни. Эти понятия тесно связаны друг с другом. Например, говорят об энергичном или работоспособном человеке, или говорят, что «очень устал, очень много работал или энергию затратил и т.д.». Греческое слово «энергия» означает «деятельность». Известно, что работа совершается за счет запаса энергии и, наоборот, совершая работу, можно увеличить запас энергии в каком-либо устройстве. Например, совершая работу при заводе часов, мы создаем запас энергии в пружине, за счет которого затем идут часы. Пусть при перемещении материальной точки В по некоторой траектории на малый отрезок на эту точку действует сила , направление которой составляет угол с направлением перемещения (рис.6.1).
Элементарной работой силы на малом перемещении называется произведение величины этой силы на величину перемещения и на косинус угла между направлением силы и направлением перемещения: (6.1) Из определения (6.1) следуют следующие особенности элементарной работы. 1. Элементарная работа – это скалярное произведение силы на малое перемещение, т.е. (6.2) Она может быть представлена в виде , (6.3) или , (6.4) где – проекция силы на направление перемещения, – проекция перемещения на направление силы. Последние формулы показывают, что перемещение тела обусловлено только касательной составляющей силы , которую называют движущей силой. Причем, эта сила должна быть постоянной на элементарном перемещении . Поэтому элементарная работа равна произведению постоянной движущей силы на величину перемещения. 2. Работа – скалярная величина. Она может быть как положительной, так и отрицательной. При 0 90 работа положительна – сила вызывает перемещение тела; при 90 180 работа отрицательна – сила препятствует движению тела; при =90 сила не совершает работы по перемещению тела. Если направления силы и перемещения совпадают ( = 0), то (6.5) 3. Если материальная точка перемещается под действием нескольких сил, то совершаемая ими работа равна сумме работ всех этих сил. 4. Если работа совершается переменной силой, то следует разделить участок траектории на элементарные отрезки так, чтобы их можно было считать прямолинейным, и сложить элементарные работы, совершаемые движущей силой на каждом из отрезков этого участка: , (6.6) где аb – участок траектории. Из формулы (6.6) вытекает, что полная работа, совершаемая материальной точкой под действием постоянной движущей силы по всей траектории, равна: (6.7)
Силы, работа которых не зависит от формы и длины пути (траектории), а зависит лишь от начального и конечного положения тела, на которое они действуют, называются консервативными. Из этого определения следует, что работа по любому замкнутому контуру для таких сил равна нулю: =0 (6.8) К ним относятся все центральные силы, т.е. силы всемирного тяготения (и силы тяжести), силы упругости и др. К неконсервативным силам относятся, например, сила трения скольжения, силы сопротивления движению тел. Силы трения называют также диссипативными силами, поскольку при наличии в системе материальных точек взаимодействий, осуществляемых этими силами, происходит исчезновение механической энергии и превращение её в тепловую (диссипация – рассеяние, уничтожение).
Мощность Pопределяется соотношением , где – работа, совершаемая за время . Подставив вместо выражение (6.2) и приняв во внимание определение скорости, получим . Таким образом, мощность равна скалярному произведению силы на скорость точки приложения силы. Единицей мощности является такая мощность, при которой за одну секунду совершается работа, равная одному джоулю. Эта единица называется ваттом (Вт). 2. Энергия и работа Энергией называют физическую величину, являющуюся общей количественной мерой различных форм движения и существования материи, происходящих в результате совершения работы. Таким образом, энергия является функцией состояния тела, например, движение тела приводит к изменению его энергии. Сам процесс изменения есть результат работы: . Катящийся шар, сталкиваясь с некоторым телом, перемещает его, т.е. совершает работу. Следовательно, катящийся шар обладает энергией. Кроме того, катящийся шар обладает энергией независимо от того, совершает он в данный момент работу или нет: энергия характеризует состояние системы, способность (возможность) системы к совершению работы при переходе из одного состояния в другое. В физике в соответствии с различными физическими процессами и взаимодействиями различают механическую, тепловую, электромагнитную, ядерную и другие энергии. Механическая энергия состоит из кинетической и потенциальной энергий. 3. Кинетическая энергия и работа Пусть под действием некоторой силы тело (материальная точка) массой совершает перемещение, изменив скорость от до , т.е. движется с ускорением . Напишем уравнение движения тела: (6.9) Учитывая определение ускорения материальной точки и умножив уравнение (6.9) на перемещение точки , получим (6.10) Проинтегрировав соотношение с учетом изменения скорости тела, имеем . Введем обозначение , которое называется кинетической энергией тела. Итак, совершенная силой работа равна приращению кинетической энергии тела: (6.11) В этом заключается и физический смысл работы. Из определения следует, что:
|