Фатыхов М.А. Лекции по механикe. Министерство образования и науки
Скачать 3.22 Mb.
|
4. Потенциальная энергия Потенциальная энергия обусловлена характером взаимодействия между телами, их взаимным расположением. Поэтому вид формулы для потенциальной энергии зависит от конкретного вида взаимодействия тел. Так, например, работа силы тяжести, необходимая для изменения положения тела относительно Земли, равна: , где – начальная и конечная высота () тела относительно Земли. Выражение называется потенциальной энергией силы тяжести. Эта работа равна изменению потенциальной энергии тела: (6.12) Положительная работа сил тяжести соответствует убыли потенциальной энергии. Наоборот, если бы тело поднималось над поверхностью Земли, приращение потенциальной энергии соответствовало бы отрицательной работе. Поэтому в общем случае следует записать: . Так как , то и (6.13) Формула (6.13) показывает, что консервативная сила – сила тяжести – равна градиенту потенциальной энергии, взятому с обратным знаком: (6.14) Эта формула связывает между собой силу и соответствующую ей потенциальную энергию, что дает возможность вычислить потенциальную энергию в каждом конкретном случае вида взаимодействия тел. Пример. Пусть задана сила всемирного тяготения . Так как , из формулы (6.13) найдем . Обычно за начальную конфигурацию системы, состоящую из двух материальных точек, взаимодействующих между собой силами всемирного тяготения, принимают расположение этих точек на бесконечно большом расстоянии друг от друга, где =0. Тогда потенциальная энергия взаимодействия точек равна (6.15) Как и закон всемирного тяготения, эта формула верна не только для материальных точек, но и для любых сферически симметричных тел. Физически знак минус обусловлен тем, что по мере самопроизвольного сближения тяготеющих тел их потенциальная энергия должна уменьшаться, переходя в кинетическую. Из формулы (6.15) следует, что максимальное значение потенциальной энергии тяготеющие тела будут иметь в том случае, когда они бесконечно удалены друг от друга. Выше мы говорили о потенциальных и консервативных силах. Они тождественны лишь в случае стационарного силового поля, т.е. поля, остающегося постоянным во времени. Поле консервативных сил является частным случаем потенциального силового поля. Для нестационарного силового поля, т.е. поля, изменяющегося во времени, формула (6.14) не выполняется. Поэтому отождествлять потенциальные и консервативные силы нельзя. 5. Закон сохранения и превращения механической энергии Рассмотрим систему, состоящую из двух материальных точек с массами . Пусть частицы взаимодействуют друг с другом с силами , модули которых зависят только от расстояния между материальными точками . Такие силы являются консервативными. Предположим, что, кроме консервативных сил, на каждую точку действуют внешняя консервативная сила и внешняя неконсервативная сила . Тогда уравнение движения каждой точки имеет вид: , (6.16) Умножив уравнения (6.16) на соответствующие перемещения , учитывая определение ускорения материальной точки и сложив вместе полученные уравнения, имеем (6.17) Левая часть представляет собой приращение кинетической энергии системы: (6.18) Первый и четвертый члены правой части равны убыли потенциального взаимодействия частиц: (6.19) Второй и пятый члены правой части равны убыли потенциальной энергии во внешнем поле консервативных сил: . Остальные члены представляют собой работу неконсервативных внешних сил: (6.20) Приняв во внимание (6.18)-(6.20), представим соотношение (6.17) следующим образом: (6.21) Величина есть полная механическая энергия системы. Если внешние неконсервативные силы отсутствуют, правая часть формулы (6.20) будет равна нулю и, следовательно, полная энергия системы остается постоянной: (6.22) Таким образом, мы пришли к выводу, что полная механическая энергия системы тел, на которые действуют только консервативные силы, остается постоянной. В этом и заключается закон сохранения механической энергии. Для замкнутой системы, т.е. системы, на тела которой не действуют никакие внешние силы, соотношение (6.22) имеет вид (6.23) В этом случае закон сохранения механической энергии формулируется следующим образом: полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остается постоянной. Если в замкнутой системе, кроме консервативных, действуют также неконсервативные силы, например силы трения, то полная механическая энергия системы не сохраняется. Рассматривая неконсервативные силы как внешние, можно в соответствии с (6.21) написать (6.24) Пример. Основными запасниками механической энергии во время бега и других циклических движений являются сухожилия. Каждый из нас может убедиться, что механическая энергия действительно запасается в наших ногах, как в пружинах. Сильно сгибая ноги в этом можно убедиться. Мы сразу заметим, что подниматься гораздо легче, если выпрямить ноги сразу, чем если задерживаться на секунду. Это можно объяснить тем, что при сгибании колен часть мышц напряжена, контролируя движение вниз, и их сухожилия растянуты. Если перед подъемом сухожилиям не дать возможность укоротиться, запасенная в них потенциальная энергия перейдет в кинетическую. В этом случае выполняется закон сохранения механической энергии для замкнутой системы тел. В противном случае между мышцами появляются неконсервативные силы, что проявляется в нагреве тела: полная механическая энергия системы не сохраняется, часть механической энергии переходит в тепловую. Свойства сухожилий более или менее одинаковы у всех животных. Однако конечности копытных, например, овец и лошадей, наиболее приспособлены для хранения механической энергии. Некоторые мышцы в нижних частях ног этих животных состоят практически целиком из одних сухожилий. Самым выразительным примером такого использования сухожилий могут служить нижние конечности верблюда. В ноге человека самым мощным является ахиллово сухожилие, на которое при беге может действовать растягивающая сила до 4000 Н. 6. Соударение двух тел Ударом называется кратковременное столкновение соударяющихся тел. Соударяющиеся тела можно считать замкнутой системой, так как возникающие при кратковременном ударе внутренние силы системы во много раз превосходят внешние. Существуют два предельных вида удара: абсолютно упругий и абсолютно неупругий. Абсолютно неупругий удар характеризуется тем, что потенциальной энергии деформации не возникает. Кинетическая энергия тел полностью или частично переходит во внутреннюю энергию. После удара столкнувшиеся тела либо покоятся, либо движутся с одинаковой скоростью. При абсолютно неупругом ударе выполняется только закон сохранения импульса. Пусть массы соударяющихся частиц (материальных частиц) равны и , а скорости до удара – и , а после соударения – . По закону сохранения импульса . Отсюда имеем (6.25) Можно найти изменение кинетической энергии шаров, т.е. ту часть, которая перешла во внутреннюю энергию: . Подставляя сюда (6.25), получим . Эта энергия переходит в тепловую энергию. Абсолютно упругим называется такой удар, при котором механическая энергия тел не переходит в другие, немеханические, виды энергии. При таком ударе кинетическая энергия переходит полностью или частично в потенциальную энергию упругой деформации. Затем тела возвращаются к первоначальной форме, отталкивая друг друга. В итоге потенциальная энергия упругой деформации снова переходит в кинетическую энергию, и тела разлетаются со скоростями, модуль и направление которых определяются двумя условиями – сохранением полной энергии и сохранением полного импульса системы тел. В качестве примера рассмотрим абсолютно упругий центральный удар двух однородных шаров. Удар называется центральным, если шары до удара движутся вдоль прямой, проходящей через их центры. Обозначим скорости шаров после удара через и . Напишем законы сохранения энергии и импульса: , (6.26) (6.27) Решая эту систему уравнений, находим скорости шаров после удара: , (6.28) Отметим, что скорости шаров после абсолютно упругого удара не могут быть одинаковыми. 7. Момент силы относительно неподвижного центра Повседневный опыт показывает, что при вращении какого-либо тела с помощью рычага существенным оказывается не только модуль силы, но и длина рычага. Для описания динамики вращения такого тела необходимо ввести понятие момента силы. При этом надо различать понятия момента силы относительно точки и относительно оси. Это разные понятия.
Пусть О – какая-либо точка, относительно которой рассматривается момент вектора силы или вектора импульса. Ее называют началом или полюсом. Обозначим радиус-вектор, проведенный из этой точки к точке приложения силы (Рис.6.2). Моментом силы относительно неподвижной точки О называется векторное произведение радиуса-вектора , проведенного из точки О к точке А, и вектора силы (6.29) Из этого определения следует, что момент не изменится, если точку приложения силы перенести в любую другую точку, расположенную на линии действия силы. Если , то на основании известного свойства векторного произведения можно написать (6.30) Это значит, что момент равнодействующей двух или нескольких сил относительно некоторого начала или произвольной точки равен геометрической сумме моментов составляющих сил относительно того же начала. Как следует из (6.29), модуль момента силы , где есть плечо силы. Плечом силы называют длину перпендикуляра, опущенного из точки О на прямую, вдоль которой действует сила. Направлен вектор перпендикулярно к плоскости, в которой лежат сила и точка О, причем направление вектора определяется правилом правого буравчика: поворот головки винта или шурупа с правой нарезкой в направлении силы вызвал бы перемещение винта в направлении вектора. 8. Момент импульса относительно неподвижного центра По аналогии с моментом силы, моментом импульса материальной точки (частицы) относительно точки О называется векторная величина (6.31) В этой формуле – импульс частицы. Модуль момента импульса , (6.32) где называется плечом импульса (рис.6.3). Таким образом, момент импульса равен произведению плеча импульса на модуль вектора импульса.
Частица обладает моментом импульса независимо от формы траектории, по которой она движется. Рассмотрим два частных случая. 1. Частица движется вдоль прямолинейной траектории (рис.6.4). Модуль момента импульса (6.33) может изменяться только за счет изменения модуля скорости.
2. Частица движется по окружности радиуса (рис.6.5). Модуль момента импульса относительно центра окружности равен и так же, как и в предыдущем случае, может изменяться только за счет изменения модуля скорости. Несмотря на непрерывное изменение направления вектора , направление вектора остается постоянным. (6.34)
9. Закон сохранения момента импульса Выясним, от чего зависит изменение момента импульса частицы. С этой целью продифференцируем выражение (6.31) с учетом определения импульса частицы по времени: . Согласно второму закону Ньютона – результирующая сил, действующих на частицу. По определению . Поэтому можно написать, что . Второе слагаемое является векторным произведением коллинеарных векторов и поэтому равно нулю. Первое слагаемое представляет собой момент силы относительно той же точки, относительно которой взят момент импульса. Следовательно, мы приходим к соотношению (6.35) Согласно уравнению (6.35) скорость изменения момента импульса со временем равна суммарному моменту сил, действующих на частицу. Рассмотрим систему частиц, на которые действуют как внутренние, так и внешние силы. Моментом импульса системы относительно точки О называется сумма моментов импульса отдельных частиц: (6.36) Дифференцирование по времени дает, что (6.37) В соответствии с (6.35) для каждой из частиц можно написать равенство , где – момент внутренних сил, а – момент внешних сил, действующих на i-ую частицу. Подставим их в равенство (6.37), получим соотношение . Каждое из слагаемых в этих суммах представляет собой сумму моментов сил, действующих на i-ую частицу. Суммирование осуществляется по частицам. Если перейти к суммированию по отдельным силам, независимо от того, к какой из частиц они приложены, индекс I в суммах можно опустить. Можно показать, что сумма моментов всех внутренних сил для любой системы частиц всегда равна нулю. Поэтому получаем, что (6.38) Отсюда видно, что производная по времени от момента импульса системы равна сумме моментов внешних сил. Если система замкнута, правая часть равенства (6.38) равна нулю и, следовательно, вектор не изменяется со временем. Отсюда вытекает закон сохранения момента импульса, который гласит, что момент импульса замкнутой системы материальных точек остается постоянным. Момент импульса сохраняется и для незамкнутой системы материальных точек, если сумма моментов внешних сил равна нулю. 10. Законы сохранения и симметрия пространства и времени Закон сохранения энергии является следствием однородности времени, закон сохранения импульса – следствием однородности пространства, а закон сохранения момента импульса – следствием изотропии пространства. Это означает, что перечисленные в нем законы сохранения можно получить из второго закона Ньютона, если к нему присоединить свойства симметрии пространства и времени, а именно: однородность пространства и времени, а также изотропию пространства. Часто говорят, что однородность времени означает равноправие всех моментов времени. Однородность пространства означает, что в пространстве нет выделенных положений, все точки пространства равноправны. Аналогично, изотропия пространства характеризуется отсутствием в нем выделенных направлений, все направления в пространстве эквивалентны. Но такие формулировки слишком неопределенны и при буквальном понимании просто неверны. Направление к центру Земли, например, резко отличается от всякого горизонтального направления. Для альпиниста положения его у подножья и на вершине Эльбруса отнюдь не эквивалентны. Тело на вершине горы, представленное самому себе, может скатиться вниз. Но оно никогда не поднимется от подножья горы к ее вершине, если ему не сообщить надлежащей скорости. Точно так же для человека моменты времени, когда он молод, полон энергии и сил и когда он стар и находится на склоне лет, отнюдь не эквивалентны. Что же такое однородность времени, однородность и изотропия пространства? Однородность времени означает, что если в два любые момента времени все тела замкнутой системы поставить в совершенно одинаковые условия, то, начиная с этих моментов, все явления в ней будут протекать совершенно одинаково. Однородность пространства означает, что если замкнутую систему тел перенести из одного места пространства в другое, поставив при этом все тела в ней в те же условия, в каких они находились в прежнем положении, то это не отразится на ходе всех последующих явлений. В том же смысле надо понимать и изотропию пространства, только вместо переноса замкнутой системы надо говорить об ее повороте в пространстве на любой угол. В связи с этими определениями отметим следующее: под замкнутой системой тел нельзя понимать всю Вселенную. Если поступить так, то перечисленные свойства симметрии пространства и времени стали бы самоочевидными. Но они стали бы и бессодержательными. Ибо говорить о переносе или повороте системы тел можно только по отношению к каким-то другим телам. Речь идет не о всей Вселенной в целом, а о таких ее частях, которые можно рассматривать как (приближенно) замкнутые системы. Отсюда ясно, что свойства симметрии пространства и времени, о которых мы говорили, отнюдь не самоочевидны. На них надо смотреть как на фундаментальные обобщения опытных фактов. После этих разъяснений обратимся к выводу закона сохранения энергии в механике. Из динамики известно, что работа сил над механической системой равна приращению ее кинетической энергии, т.е. (6.39) Рассмотрим одну материальную точку, находящуюся под действием силы . Предположим, что проекции силы могут быть получены дифференцированием потенциальной функции : , , Однако сама потенциальная функция может зависеть явно не только от координат рассматриваемой материальной точки, но и от времени t: . Например, это будет так, когда точка находится в силовом поле других тел, которое меняется во времени. Работа, производимая действующими силами над материальной точкой при перемещении ее вдоль некоторой кривой из положения 1 в положение 2, представляется интегралом , взятым вдоль той же кривой. Прибавим и вычтем под знаком интеграла член . Тогда имеем . Под первым интегралом находится полный дифференциал потенциальной функции . Поэтому (6.40) В таком виде последнее равенство справедливо и для системы материальных точек. Поэтому дальнейшие рассуждения не связаны с предположением о том, что система состоит из одной материальной точки. После интегрирования (6.40) получаем (6.41) Комбинация этой формулы с (6.38) приводит к соотношению (6.42) До сих пор мы не использовали условие замкнутости системы и свойства однородности времени, поэтому наши рассуждения применимы и для незамкнутых систем. Допустим теперь, что система замкнута. Тогда ввиду однородности времени функция не может явно зависеть от времени, т.е. . В результате получим , (6.43) т.е. уравнение, выражающее закон сохранения механической энергии. Докажем закон сохранения импульса. Допустим, что механическая система замкнута. Все силы , действующие на материальные точки системы, являются силами внутренними, внешних сил нет. Перенесем систему из произвольного положения 1 в другое произвольное положение 2, чтобы все материальные точки ее претерпели одно и то же перемещение и притом так, чтобы их скорости остались прежними по величине и направлению. Ввиду однородности пространства на такое перемещение не требуется затраты работы. Но эта работа представляется скалярным произведением Значит, она равно нулю, каково бы ни было перемещение. Отсюда следует, что для замкнутой системы А это есть как раз то условие, при выполнении которого из второго закона Ньютона получается закон сохранения импульса. Закон сохранения момента импульса для замкнутой системы доказывается в точности так же. Используя изотропию пространства можно доказать, что геометрическая сумма моментов внутренних сил, действующих в системе, равна нулю: . Отсюда немедленно следует рассматриваемый закон. |