Главная страница
Навигация по странице:

  • 12.1. ВИДЫ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

  • Проектирование хим. предприятий. Навчальний посібник до вивчення курсу основи проектування хімічних виробництв


    Скачать 6.93 Mb.
    НазваниеНавчальний посібник до вивчення курсу основи проектування хімічних виробництв
    АнкорПроектирование хим. предприятий.docx
    Дата22.12.2017
    Размер6.93 Mb.
    Формат файлаdocx
    Имя файлаПроектирование хим. предприятий.docx
    ТипНавчальний посібник
    #12469
    страница20 из 27
    1   ...   16   17   18   19   20   21   22   23   ...   27
    Глава 12 КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ В ХИМИЧЕСКОМ МАШИНОСТРОЕНИИ

    Специфические условия эксплуатации химического оборудования, характеризуемые широким диапазоном давлений и температур при агрессивном воздействии среды, определяют следующие основные требования к конструкционным матери-

    алам:

    - высокая химическая и коррозионная стойкость материалов в агрессивных средах при рабочих параметрах;

    - высокая механическая прочность при заданных рабочих давлениях, температуре и дополнительных нагрузках, возникающих при гидравлических испытаниях и в период эксплуатации аппаратов;

    - хорошая свариваемость материалов с обеспечением высоких механических свойств сварных соединений;

    - низкая стоимость и недефицитность материалов.

    12.1. ВИДЫ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

    Конструкционные материалы, используемые в химическом машиностроении, условно делятся на четыре класса:

    - стали;

    - чугуны;

    - цветные металлы и сплавы;

    - неметаллические материалы.

    Стали. Сталь представляет собой сплав железа с углеродом, содержание которого не превышает 1 - 2%. Кроме того, в состав стали входят примеси кремния, марганца, а также серы и фосфора.

    Стали по химическому составу делятся на несколько групп:

    - углеродистые обыкновенного качества;

    - углеродистые конструкционные;

    - легированные конструкционные и др.

    Сталь углеродистую обыкновенного качества изготавливают в зависимости от хи-

    мического состава по ГОСТ 380-88 и ГОСТ 16523-88. Сталь углеродистая обык-

    новенная делится на несколько категорий - 1, 2, 3, 4, 5, 6 - чем больше номер, тем выше механическая прочность стали и ниже ее пластичность. По степени раскисления стали всехкатегорий изготавливают кипящими (кп), полуспокойными (пс) и спокойными (сп).

    В табл. 12.1 приведены примеры использования углеродистой стали

    обыкновенного качества в химическом машиностроении.

    Таблица 12.1. Углеродистая сталь обыкновенная

    Сталь

    Назначение

    Ст3пс, Ст3сп

    Несущие элементы сварных и несварных конструкций, работающих при положительных температурах

    Ст3пс3. Ст3сп5

    Несущие элементы сварных конструкций, работающих при переменных нагрузках в интервале температур от - 30 до +425 °С

    Ст3пс, Ст5сп

    Детали клепаных конструкций, трубные решетки, болты, гайки, стержни и другие детали, работающие при температурах от 0 до 425 °С


    Свойства углеродистой стали обыкновенного качества значительно повышаются после термической обработки, которая для проката может выражаться в его закал-

    ке либо непосредственно после проката, либо после специального нагрева.

    Например, термическое упрочнение листового проката из стали марок Ст3, Ст3кп при охлаждении в воде повышает предел текучести более чем в 1,5 раза при высо-

    ком (15÷26%) относительном удлинении.

    Термическая обработка низкоуглеродистых сталей не только улучшает механичес-

    кие свойства сталей, но и приносит значительный экономический эффект.

    Стали углеродистые конструкционные выпускаются по ГОСТ 1050-74 следующих марок: 08, 10, 15,20, 25, 30,40, 45, 55, 58 и 60. В зависимости от степени раскисле-

    ния по ГОСТ 1050-88 выпускаются следующие марки стали: 05кп, 08кп, 08пс, 10кп, 10пс, 11кп, 15кп, 18кп, 20кп и 20пс.

    В табл. 12.2 приведены примеры использования углеродистой конструкционной стали в химическом машиностроении.

    Таблица 12.2. Углеродистая сталь конструкционная

    Сталь

    Назначение

    08кп, 08 пс, 08, 10кп, 10пс, 10, 11кп

    Патрубки, днища, испарители, конденсаторы, труб-

    ные решетки, трубные пучки, змеевики и другие детали, работающие под давлением при температурах от - 40 до + 425°С

    15кп, 15пс, 15, 20кп, 18кп, 20пс, 20, 25

    Патрубки, штуцера, болты, трубные пучки, корпуса аппаратов и другие детали аппаратов в котлотурбо-

    строении и химическом машиностроении, работаю-

    щие под давлением при температурах от - 40 до + 425°С, из кипящей стали – от - 20 до + 425 °С

    10Г2

    Патрубки, трубные пучки и решетки, змеевики и шту

    цера, работающие при температурах до - 70 0С под давлением


    Для улучшения физико-механических характеристик сталей и придания им особых свойств (жаропрочность, кислотостойкость, жаростойкость и др.) в их состав вво-

    дят определенные легирующие добавки. Наиболее распространенные легируюшие добавки:

    - хром (X) - повышает твердость, прочность, химическую и коррозионную стойкость, термостойкость;

    - никель (Н) - повышает прочность, пластичность и вязкость;

    - вольфрам (В) - повышает твердость стали, обеспечивает ее самозакаливание;

    - молибден (М) - повышает твердость, предел текучести при растяжении, вязкость, улучшает свариваемость;

    - марганец (Г) - повышает твердость, увеличивает коррозионную стойкость, понижает теплопроводность;

    - кремний (С) - повышает твердость, прочность, пределы текучести и упругости, кислотостойкость;

    - ванадий (Ф) - повышает твердость, предел текучести при растяжении, вязкость, улучшает свариваемость стали и увеличивает стойкость к водородной коррозии;

    - титан (Т) - увеличивает прочность и повышает коррозионную стойкость стали при высоких (> 800 °С) температурах.

    Обычно в состав легированных сталей входят несколько добавок. По общему содержанию легирующих добавок легированные стали делят на три группы:

    - низколегированные - с содержанием добавок до 3%;

    - среднелегированные - с содержанием добавок от 3 до 10%;

    - высоколегированные - с содержанием добавок > 10%.

    В табл. 12.3 приведены примеры использования легированных сталей в химическом машиностроении.

    Существенное значение для улучшения качества стали имеет химико-термическая обработка, т.е. процесс насыщения поверхности стали различными элементами с целью упрочнения ее поверхностного слоя, увеличения поверхностной твердости, жаростойкости и химической стойкости.

    Таблица 12.3. Легированные конструкционные стали

    Сталь

    Назначение

    Коррозионностойкие стали дчя применения в слабоагрессивных средах

    08X13, 12X13

    Азотная и хромовая кислоты различной концентрации при темпера-

    туре не более 25 °С. Уксусная кислота концентрации <5% при температуре до 25 0С. Щелочи (аммиак, едкий натр, едкое кали). Соли органические и неорганические при температуре не более 50 °С и концентрации менее 50%

    30X13,40X13

    Обладают повышенной твердостью, хорошей коррозионной стой-

    костью во влажном воздухе, водопроводной воде, в некоторых ор-

    ганических кислотах, растворах солей и щелочей, азотной кислоте и хлористом натре при 20 0С

    12X17

    Окалиностойкая до 850 °С

    10Х14АГ15,

    10Х14Г14Н4Т,

    12Х17Г9АН4

    Заменители сталей 12Х18Н9Т, 17Х18Н9, 12Х18Н10Т для оборудования, работающего в слабоагрессивных средах, а также изделий, ра

    ботающих при повышенных температурах до +400 0С и пониженной температуре до - 196 °С

    Коррозионностойкие стали для сред средней агрессивности

    08X17Т,

    08Х18Т1,

    15Х25Т

    Заменители стали марки 12Х18Н10Т и 12Х18Н9Т для сварных кон-

    струкций, не подвергающихся воздействию ударных нагрузок при температуре эксплуатации не ниже - 20 °С. Для труб теплообменной аппаратуры. Эксплуатировать в интервале температур 400 - 700 °С не рекомендуется. Стойкие к действию азотной, фосфорной, лимон-

    ной, уксусной, щавелевой кислот разных концентраций при температурах не более 100 °С

    08Х22Н6Т, 08Х18Г8Н2Т

    Заменитель сталей 12Х18Н10Т и 08Х18Н10Т. Обладает более высо-

    кой прочностью, чем эти стали, и используется для изготовления сварной аппаратуры, работающей при температуре не выше 300 °С.

    12X21Н5Т

    Заменитель стали 12Х18Н9Т для сварных и паянных конструкций

    12Х18Н9Т,

    12Х18Н10Т,

    12Х18Н12Т

    Высокая коррозионная стойкость по отношению к азотной, холодной фосфорной и органическим кислотам (за исключением уксусной, муравьиной, молочной и щавелевой), к растворам многих солей и щелочей, морской воде, влажному воздуху. Неустойчивы в соляной, серной, плавиковой, горячей фосфорной, кипящих органических кислотах. Обладают удовлетворительной сопротивляемостью к межкристаллитной коррозии

    08Х18Н12Б

    Обладает более высокой стойкостью, чем сталь 12Х18Н10Т. Напри

    мер, сталь устойчива к действию 65% азотной кислоты при температуре не более 50 °С, к действию концентрированной азотной кис-

    лоты при температуре не более 20 °С, к большинству растворов солей органических и неорганических кислот при разных температурах и концентрациях

    Х18Н14М2Б, 1Х18М9Т

    Используются в производстве формальдегидных смол

    Х18Н9Т, Х20Н12МЗТ

    Используются в качестве конструкционного материала в производстве пластмасс

    07X21Г7АН5,

    12Х18Н9,

    08Х18Н10

    Для сварных изделий, работающих при криогенных температурах до - 253 °С

    Коррозионностойкие стали для сред повышенной и высокой агрессивности

    04X18Н10, 03Х18Н11

    Для оборудования и трубопроводов в производстве азотной кислоты и аммиачной селитры

    08Х18Н10Т, 08Х18Н12Т

    Для изготовления сварных изделий, работающих в средах высокой агрессивности. Применяется как жаростойкая сталь при температуре до 600 °С

    10Х17Н13М2Т,

    10Х17Н13МЗТ,

    08Х17Н15МЗТ,

    08Х17Н14МЗ,

    03Х21Н21М4ГБ

    Для изготовления сварных конструкций, работающих в условиях действия кипящей фосфорной, серной, 10%-й уксусной кислоты и в сернокислых средах. Сварные корпуса, днища, фланцы и другие де-

    тали при температуре от - 196 до 600 °С под давлением

    06ХН38МДТ. 03ХН28МДТ

    Для сварных конструкций, работающих при температурах до 80 °С в условиях производства серной кислоты различных концентраций

    06ХН28МДТ, 10Х17Н13М2Т

    Молочная, муравьиная кислоты при температуре до 20 °С. Едкое кали концентрации до 68% при температуре 120 °С. Азотная кислота концентрации 100% при температуре 70 °С. Соляная кислота, сухой йод концентрации до 10% при температуре до 20 ° С


    К основным видам химико-термической обработки, изделий из стали относятся:

    - цементация - процесс насыщения поверхностного слоя углеродом, что улучшает его прочность и твердость;

    - азотирование - процесс насыщения поверхностного слоя азотом, что повышает стойкость изделий к истиранию и атмосферной коррозии;

    - алитирование - процесс диффузионного насыщения поверхностного слоя алюми-

    нием, что повышает стойкость к окислению при температурах 800 -1000 °С;

    - хромирование - поверхностное насыщение изделий хромом, что значительно повышает твердость, износостойкость и коррозионную стойкость в воде, азотной кислоте, атмосфере и газовых средах при высоких температурах.

    Дальнейшее улучшение качества химико-термической обработки сталей развивается по двум направлениям: насыщение диффузионного слоя азотом и упрочнение деталей термоциклической обработкой в процессе насыщения. Основой новых технологических процессов стала нитроцементация со ступенчатым возрастанием расхода аммиака Толщина слоя при этом увеличивается до 1 - 2 мм и более, возрастает его твердость.

    Чугуны. Серые чугуньг представляют собой сплав железа, углерода и других металлургических добавок: кремния, марганца, фосфора и серы. Содержание углерода в чугунах колеблется от 2,8 до 3,7%, при этом большая его часть находится в свободном состоянии (графит) и только около 0,8÷0,9% находится в связанном состоянии в виде цементита (карбида железа – Fе3С). Свободный углерод выделяется в чугуне в виде пластинок, чешуек или зерен. По микроструктуре раз-

    личают:

    чугун серый - в структуре которого углерод выделяется в виде пластинчатого или шаровидного графита;

    чугун белый - в структуре которого углерод выделяется в связанном состоянии;

    чугун отбеленный - в отливках которого внешний слой имеет структуру белого чугуна, а сердцевина - структуру серого чугуна;

    чугун половинчатый - в структуре которого углерод выделяется частично в связан

    ном, а частично в свободном виде.

    Детали из чугуна изготавливают методом литья в земляных и металлических формах. Из чугуна получают детали сложной конфигурации, которые невозможно получить другими методами, например, ковкой или резанием.

    Серый чугун является ценным конструкционным материалом, так как, имея срав

    нительно низкую стоимость, он обладает неплохими механическими свойствами.

    Существенным недостатком серых чугунов является их низкая пластичность. Поэтому ковка и штамповка серого чугуна даже в нагретом состоянии невозможна.

    Марки серых чугунов (СЧ) обычно содержат два числа: первое характеризует пре

    дел прочности на растяжение, второе - предел прочности на изгиб, например,

    СЧ 12-28; СЧ 18-36 и др.

    Серые чугуны обладают низкой химической стойкостью, и детали из них не могут работать в агрессивных средах.

    Для повышения качества чугуна его модифицируют различными модификаторами, которые воздействуют на процесс кристаллизации жидкого чугуна, изменяя его механические свойства.

    Различают ковкий чугун и высокопрочный чугун. Ковкий чугун (КЧ) отличается от серого чугуна пониженным содержанием углерода и кремния, что делает его более пластичным, способным выдерживать значительные деформации (относительное удлинение КЧ составляет 3 - 10%). Высокопрочный чугун (ВЧ) является разновидностью ковкого чугуна, высокие прочностные характеристики которого достигаются модифицированием присадками магния и его сплавов. Ковкий и высокопрочный чугуны идут на изготовление коленчатых валов, цилиндров малых компрессоров и других фасонных тонкостенных деталей.

    Широкое применение в химическом машиностроении имеют легированные чугу-

    ны, в состав которых входят легирующие элементы, никель, хром, молибден, ванадий, титан, бор и др.

    По суммарному содержанию легирующих добавок чугуны делят на три группы:

    - низколегированные - легирующих добавок до 3%;

    - среднелегированные - легирующих добавок от 3 до 10%;

    - высоколегированные - легирующих добавок более 10%.

    Легирование позволяет существенно улучшить качество чугуна и придать ему осо-

    бые свойства. Например:

    - введение никеля, хрома, молибдена, кремния повышает химическую стойкость и жаропрочность чугуна;

    - никелевые чугуны с добавкой меди (5 - 6%) надежно работают со шелочами;

    - высокохромные (до 30% Сr) устойчивы к действию азотной, фосфорной и уксусной кислот, а также хлористых соединений;

    - чугун с добавкой молибдена до 4% (антихлор) хорошо противостоит действию соляной кислоты.
    1   ...   16   17   18   19   20   21   22   23   ...   27


    написать администратору сайта