фзл. Общая физиология возбудимых тканей
Скачать 1.43 Mb.
|
Зрительная сенсорная система. Участие структур глазного яблока в механизмах рефракции. Механизм аккомодации хрусталика. Аномалии рефракции глаза и принципы их коррекции. Механизмы зрачкового рефлекса. Зрительныйанализатор включает периферическую часть, проводящие афферентные пути и центральный мозговой аппарат. Периферическая часть представлена сложным рецептором(глаз), в состав которого входят фоторецепторными клетками. Фоторецепторные клетки расположены в сетчатой оболочке глазного яблока.Механизм рефракции. Строение и функции оптической системы глаза:Луч света на пути до сетчатки должен пройти четыре преломляющие поверхности: переднюю и заднюю поверхности роговицы и переднюю и заднюю поверхности хрусталика и стекловидное тело. Из-за этого происходит преломление световых лучей внутри глаза. Преломляющая сила оптической системы выражается в диоптриях (D). Преломляющая сила для здорового глаза для рассмотрении на далеких расстояниях составляет 59 D, а при рассмотрении близких предметов 70,5 D. Изображение на сетчатке резко уменьшено, перевернуто сверху вниз- справа налево. Аккомодация. Обеспечивает приспособление глаза к ясному видению предметов, расположенных на различном расстоянии. Достигается изменением кривизны хрусталика, что позволяет изменять его преломляющую силу и фокусировать изображение на сетчатке. При рассмотрении близкого предмета кривизна увеличивается, при рассмотрении дальнего предмета хрусталик уплощается. Хрусталик помещен в прозрачную капсулы, которая исходно растягивается цинновыми связками/это уплощает хрусталик/, сокращение гладких мышц ресничного тела ослабляют натяжение цинновых связок, это увеличивает кривизну хрусталика. Гладкие мышцы ресничного тела имеют парасимпатическую иннервацию. По этому атропин парализует аккомодацию глаза для близких предметов. Аномалиирефракции.близорукость(миопия)- Если продольная ось глаза слишком длинная/врожденно/, то лучи от далекого объектафокусируются перед сетчаткой, в стекловидном теле. Коррекция- вогнутыми стеклами. дальнозрость (гиперметрия)-Если продольная ось глаза укорочена/врожденно/, то лучи отдальнего объекта фокусируются за сетчаткой.старческая дальнозоркость (пресбиопия) - С возрастом эластичность капсулы хрусталика уменьшается и при натяжении цинновой связки кривизна хрусталика не изменяется, близкие предметы видны плохо. Гиперметрия и пресбиопия корригируютсядвояковыпуклыми линзами. Астигматизм/аномалия рефракции/. Обусловлен не строго сферичной поверхностью роговицы, вызывает неодинаковое преломление по разным меридианам глаза. Коррекция- цилиндрическими линзами. Катаракта-нарушение прозрачности хрусталика. Зрачок и зрачковый рефлекс. Зрачок это отверстие в радужной оболочки /от 1,8 мм при максимальном сужении до 7,5 при максимальном расширении/, через него лучи света проходят внутрь глаза. Зрачок повышает четкость изображения, так как пропускает только центральные лучи, устраняя сферическую аберрацию. Зрачок увеличивает глубину резкости. Зрачковый рефлекс на свет. Яркое освещение приводит к сужению зрачка, затемнение - к расширению. Диапазон изменений: максимально площадь зрачка может меняться в 17 раз, в 17 раз может изменяться и световой поток. Это адаптивный механизм. Зрачковый рефлекс на другие раздражители.Зрачок окружают два вида мышц: радужный сфинктер/кольцевые волокна/, парасимпатическая иннервация и радужный дилятатор /радиальные волокна/,симпатическая иннервация. Ацетилхолин, эзерин- сужение зрачка, адреналин расширение. Боль, гипоксия, положительные и стенические отрицательные эмоции сопровождается расширением зрачков. Реакция зрачков в норме на свет содружественная, т. е. при увеличении освещения одного зрачка/сужение/ аналогично реагировал и зрачок неосвещенного глаза. При некоторых видах патологии содружественность реакции отсутствует. В некоторых патологических случаях размеры зрачков обеих глаз различны(анизокария). Строение и функциональное значение сетчатки. Виды фоторецепторов и их характеристика. Фотохимические и электрофизиологические процессы в сетчатке при действии света. Сетчатка это внутренняя фоточувствительная оболочка глаза. Это многослойная структура. Здесь расположены два вида вторично - чувствующих фоторецепторов/палочки и колбочки/ и несколько видов нервных клеток.Возбуждение с фоторецепторов передается на первую нервную клетку сетчатки(биполярный нейрон), с них возбуждение переходит на ганглиозные клетки сетчатки, которые передают нервные импульсы в подкорковые зрительные центры. Пигментный слой(топика- задний, наружный). Образован одним рядом эндотелия, содержащего много органоидов, большая часть- меланосомы, придающие этому слою черный цвет. Функции пигментного слоя : 1.Экранирующий эффект. Он поглощает доходящий до него свет, препятствуя его отражению и рассеиванию, что способствует четкости зрительного восприятия. 2. Ресинтез зрительных пигментов.Обеспечивает восстановление пигментов после их обесцвечивания. 3. Постоянное обновление наружных сегментов палочек и колбочек. Обеспечивает фагоцитоз обломков постоянно разрушающихся наружных сегментов. 4.Защита фоторецепторных клеток от светового повреждения. 5. Обеспечение фоторецепторных клеток питательными веществами, кислородам. Фоторецепторный слой не имеет капилляров /аваскуляризирован/. Связь между пигментными и фоторецепторными клетками слабая. Именно в этом месте происходит отслойка сетчатки, которая на 1 -ом этапе приводит к нарушению зрения за счет смещения оптического фокуса изображения, а на 2-ом быстро развивающемся этапе нарушения зрения обусловлены дегенерацией фоторецепторов вследствие метаболических нарушений, так как нарушается связь описанная в пункте 5. Фоторецепторы. В сетчатке 120 мл. палочек и 6 мл. колбочек. Всего около 130 мл фоторецепторных клеток. Распределение палочек и колбочек в сетчатке неравномерно- в центральной ямке- одни колбочки, по направлению к периферии число колбочек уменьшается, а число палочек возрастает, на периферии - одни палочки. 130 мл. фоторецепторов через биполярные клетки связаны 1 мл. 250 тыс. ганглиозных клеток сетчатки. Фоторецепторы, соединенные с одной ганглиозной клеткой образуют рецептивное поле. Колбочки функционируют в условиях большой освещенности,они обеспечивают дневное зрение,способны воспринимать волны различной длины, обеспечивают восприятие цвета(цветовое зрение). Палочки 500 раз более чувствительны к свету, чем колбочки, реагируют только на волны одной длины.Обеспечивают сумеречное зрение. Ответственны за периферическое зрение(велико при низкой освещенности). Зрительные пигменты. Зрительные пигменты (состоящие из опсина и ретиналя) находятся в наружном сегменте фоторецепторов. В палочках - родопсин, в колбочках - иодопсин, хлораб, эритраб. Фотохимические процессы в сетчатке протекают весьма экономно. Даже при действии яркого света расщепляется только небольшая часть имеющегося в палочках родопсина (около 0,006%). В темноте – ресинтез пигментов (с поглащением энергии). Восстановление йодопсина в 530 раз быстрее, чем родопсина. При постоянном и равномерном освещении – равновесие между скоростью распада и ресинтеза пигментов. Когда кол-во света ¯ – динамическое равновесие нарушается и сдвигается в сторону более высоких концентраций пигмента àфеномен темновой адаптации. Максимум спектр поглощения пигмента палочек 500 нм/нанометров/. Молекулярные основы фоторецепции и ее сопряжение с электрогенезом элементов сетчатки Расшифрованы частично. Понятно, что под воздействием кванта происходит мгновенная (1пс - 1-12 с) изомеризация хромофорной группы зрительного пигмента -11-цис-ретиналя в транс- ретиналь, это вызывает изменение в белковой части пигмента, она обесцвечивается и переходит в метаформу 11, которая взаимодействует с примембранным белком - трансдуцином, который обменивает, связанный с ним в темноте ГДФ на ГТФ, который активирует другой примембранный белок-фермент фосфодиэстеразу, который снижает концентрацию цАМФ и вызывает избыточное накопление ионов Na, гиперполяризацию мембраны фоторецептора, что формирует генераторный потенциал, после чего происходит сложный процесс возвращения мембранного потенциала к исходному уровню и ресинтез зрительного пигмента. Ганглиозные клетки формируют рецептивные поля и интегрируют информацию, закодированную в виде генераторных потенциалов, от большого числа фоторецепторов и формируют различные виды вызванной активности, которые регистрируются в виде электроретинограммы.Из сетчатки зрительная информация распространяется по волокнам зрительного нерва/2 пара черепно-мозговых нервов/ Теории цветоощущения. Основные формы нарушения цветового восприятия. Периметрия. Участие зрительной коры в формировании зрительного ощущения и восприятия. Теории цветоощущения Трехкомпонентная теория/Г. Гельмгольц/. Три типа колбочек. Каждый тип колбочек содержит один из трех зрительных пигментов. Одни воспринимают красный цвет, другие- зеленый, третьи- синий. Сложная интеграция позволяет получать все известные цвета и их оттенки. Трехэлементная теория./Э. Геринг/. Каждая колбочка содержит все три зрительных пигмента. Идеология такая же. Нарушение функции палочек /при недостатке витамина А/ - нарушение зрения «куриная слепота», человек слепнет в сумерках, днем зрение нормальное. При поражении колбочек развивается светобоязнь- человек слепнет при ярком освещении, при слабом - видит. При глубоком поражении колбочек может развиться полная цветовая слепота- ахромозия. Частичная цветовая слепота - дальтонизм. Имеет три разновидности: протанопия (красно-слепые)- не видят красный цвет, сине-голубые лучи воспринимаются ими как бесцветные, дейтранопия (зелено-слепые) - не отличают зеленый цвет от темно-красных и голубых цветов, тританопия - не видит синий и фиолетовый цвет. Причина - врожденное отсутствие одного их зрительных пигментов. Периметрия — определение границ поля зрения при проекции их на сферическую поверхность. Исследование производят при помощи периметра. Основу прибора составляет дуга в половину окружности, которую можно вращать вокруг горизонтальной оси. На наружной поверхности дуги нанесены деления в градусах. При периметрии по внутренней поверхности дуги от периферии к центру передвигают в разных меридианах пластинку с белым или цветным (красным, зеленым, синим) объектом; размеры объекта варьируют от 1 мм2 до 1 см2. Исследование производят в светлой комнате или в темной комнате с искусственным постоянным освещением дуги периметра. На специальном бланке отмечают границы поля зрения в соответствии с показаниями испытуемого (по моменту первого восприятия объекта). Из сетчатки зрительная информация распространяется по волокнам зрительного нерва/2 пара черепно-мозговых нервов/ Зрительный путь. Отростки фоторецепторов образуют зрительный нерв. Место выхода зрительного нерва из глазного яблока, не содержит фоторецепторов. Этот участок сетчатки называют слепым пятном. После выхода зрительного нерва из глаза все нервные волокна с медиальной стороны переходят на противоположную сторону и соединяются с латеральными волокнами другой стороны/хиазма/. Перекрещенные волокна от одного глаза и не перекрещенные от другого вместе образуют зрительный тракт. Волокна зрительного тракта переключаются в ядрах верхних бугров четверохолмья, ядрах латерального коленчатого тела, супрахиазмиальныхядрах гипоталамуса, ядрах глазодвигательного нерва. Аксоны клеток ядер двухолмия и латеральных коленчатых тел идут к зрительной коре, которая связана с ассоциативной корой. В корковом отделе происходит специализированная обработка информации. Картина возбуждения в нейронных слоях подкоркового зрительного центра — наружного или латерального, коленчатого тела (НКТ), куда приходят волокна зрительного нерва, во многом сходна с той, которая наблюдается в сетчатке. Рецептивные поля этих нейронов также круглые, но меньшего размера, чем в сетчатке. Ответы нейронов, генерируемые в ответ на вспышку света, здесь короче, чем в сетчатке. На уровне наружных коленчатых тел происходит взаимодействие афферентных сигналов, пришедших из сетчатки, с эфферентными сигналами из зрительной области коры, а также через ретикулярную формацию от слуховой и других сенсорных систем. Эти взаимодействия обеспечивают выделение наиболее существенных компонентов сенсорного сигнала и процессы избирательного зрительного внимания. Импульсные разряды нейронов наружного коленчатого тела по их аксонам поступают в затылочную часть полушарий большого мозга, где расположена первичная проекционная область зрительной зоны коры (стриарная кора, или поле 17). Здесь происходит значительно более специализированная и сложная, чем в сетчатке и в наружных коленчатых телах, переработка информации. Нейроны зрительной зоны коры имеют не круглые, а вытянутые (по горизонтали, вертикали или в одном из косых направлений) рецептивные поля небольшого размера. Благодаря этому они способны выделять из цельного изображения отдельные фрагменты линий с той или иной ориентацией и расположением (детекторы ориентации) и избирательно на них реагировать. В каждом небольшом участке зрительной зоны коры по ее глубине сконцентрированы нейроны с одинаковой ориентацией и локализацией рецептивных полей в поле зрения. Они образуют колонку нейронов, проходящую вертикально через все слои коры. Колонка — пример функционального объединения корковых нейронов, осуществляющих сходную функцию. Многие нейроны зрительной зоны коры избирательно реагируют на определенные направления движения (дирекциональные детекторы) либо на какой-то цвет, а часть нейронов лучше всего отвечает на относительную удаленность объекта от глаз. Информация о разных признаках зрительных объектов (форма, цвет, движение) обрабатывается параллельно в разных частях зрительной зоны кор Слуховая сенсорная система. Особенности строения и свойств звукопроводящего и звуковоспринимающего аппаратов. Механизмы восприятия и анализа звуков. Физиология слуховой коры. Слуховой анализатор, как и все другие, состоит из трех отделов: периферического, проводникового и коркового. Периферический отдел представлен волосковыми клетками кортиевого органа, который находится в улитке внутреннего уха. Звуковые колебания передаются к ним через целую систему образований; наружный слуховой проход, барабанную перепонку, слуховые косточки, жидкость лабиринта и основную перепонку улитки. Наружное ухо - служит для проведения звуковых колебаний к барабанной перепонке. Барабанная перепонка. Площадь - около 70 мм2, граница между наружным и средним ухом. Представлена конусообразной мембраной, в которой волокна расположены так, чтобы не произошел резонанс. В среднем ухе расположена мышца, напрягающая барабанную перепонку, при сильных звуках она напрягает перепонку, повышая ее устойчивость. Колебание барабанной перепонки может менять давление в среднем ухе, которое уравновешивается через евстахиеву трубу. Среднее ухо - включает в себя систему косточек: молоточек, наковальня и стремечко, а так же стременную мышцу, сокращение которой способно ограничить амплитуду колебаний стремечка. За счет этих косточек колебания от барабанной перепонки передаются внутреннему уху. При этом снижается их амплитуда и в 20 раз они усиливаются. Рукоятка молоточка вплетена в волокна барабанной перепонки, стремечко основанием вращено в мембрану овального окна, которое открывается в преддверие улитки. Внутренне ухо - здесь находится улитка. Разделена более тонкой перепонкой (мембраной Рейснера) и более толстой и упругой (базальной мембраной) перепонками на три канала: верхний канал (вестибулярная лестница), нижний канал (барабанная лестница), которые заполнены перилимфой и соединены на верхушке улитки хеликотремой (круглым отверстием улитки). Средний канал (перепончатый), т.к. образован мембранами, заполнен эндолимфой. В нем на базальной мембране по всей длине расположен кортиев орган. В его составе имеется два вида вторично-чувствущих механорецепторов - наружные и внутренние волосковые клетки. Наружные волосковые клетки располагаются в 3-4 ряда, общее их число - 12—20 тыс. Внутренние волосковые клетки расположены в один ряд (3.5 тыс.). Один полюс волосковой клетки крепится к базальной мембране, а другой обращен в полость, имеет волоски (стереоцилий) - 100 волосков, верхушки которых связаны между тонкой нитью (микрофиломентом). Волоски рецепторных клеток омываются эндолимфой и покрыты текториальной (покровной) мембраной. Колебание овального окна, открывающегося в преддверие улитки, вызывает колебательные волны в нижнем и верхнем канале, которые неизмененными доходят до круглого окна, покрытого мембраной и открывающегося в среднее ухо. Наличие такого окна позволяет совершать колебательные движения несжимаемой жидкости - перилимфе. Эти колебания передаются на средний канал, вызывая колебания эндолимфы, базальной мембраны, что приводит к отклонению волосков на несколько градусов. Увеличивает напряжение тончайшей нити (микромилофиломента), что отклонят другие волоски и вызывает механическое, без посредников открытие 1-5 ионных каналов. Происходит деполяризация волосковых клеток и, как следствие, выделение медиатора - ацетилхолин, глютамат, аспартат. Воздействуя на постсинаптическую мембрану афферентного волокна, который является дендритом ганглиозных нервных клеток спирального ганглия (1 нейрон). Аксоны этих нервных клеток несут звуковую информацию к кохлеарным ядрам слухового центра продолговатого мозга, далее к верхним оливам, ядрам латерального лемниска, нижнему двухолмью четверохолмия, медиальным коленчатым телам, слуховой коре. На пути от рецепторов к коре слуховая информация проходит 3-5 уровней переключений и не менее 3 перекрестов. В корковом отделе слухового анализатора происходит обработка полученной информации. На уровне рецепторных клеток происходит преобразование механических сигналов в электрические. При этом регистрируются 1) микрофонный и 2) суммационный потенциалы. Микрофонный потенциал регистрировался при частоте звуковых стимулов 4000-5000 Гц, суммационный потенциал при такой величине стимула не регистрируется. Суммационный потенциал возникает при больших частотах, более 4000-5000 Гц, микрофонный потенциал при этом не регистрируется. Существуют две теории преобразования механических явлений в электрические. Первая - теория места (резонанса) - определенные длины волн вызывают резонансные колебания определенной части базальной мембраны. Такой механизм реализуется при действии низких звуковых частот. Вторая- теория залпов (частотного кодирования) - определенные длины волн вызывают определенную частоту импульсов в нейронах (частотная синхронизация). Такой механизм реализуется при действии высоких звуковых частот |