Аналитическая химия. Аналит. 3. Oсадительное титрование.. Суть и классификация методов
Скачать 1.45 Mb.
|
Окислительно – восстановительные (электродные) потенциалыМерой окислительно–восстановительной способности веществ служат их электродные или окислительно–восстановительные потенциалы jox/Red (редокс-потенциалы). 1 Окислительно – восстановительный потенциал характеризует окислительно – восстановительную систему, состоящую из окисленной формы вещества (Ох), восстановленной формы (Red) и электронов. Принято записывать окислительно-восстановительные системы в виде обратимых реакций восстановления: Ох + ne- D Red. Механизм возникновения электродного потенциала. Механизм возникновения электродного или окислительно-восстановительного потенциала поясним на примере металла, погруженного в раствор, содержащий его ионы. Все металлы имеют кристаллическое строение. Кристаллическая решетка металла состоит из положительно заряженных ионов Men+ и свободных валентных электронов (электронный газ). В отсутствие водного раствора выход катионов металла из решетки металла невозможен, т.к. этот процесс требует больших энергетических затрат. При погружении металла в водный раствор соли, содержащей в своем составе катионы металла, полярные молекулы воды, соответственно ориентируясь у поверхности металла (электрода), взаимодействуют с поверхностными катионами металла (рис. 9.1). В результате взаимодействия происходит окисление металла и его гидратированные ионы переходят в раствор, оставляя в металле электроны: Ох + ne- D Red. Металл становится заряженным отрицательно, а раствор - положительно. Положительно заряженные ионы из раствора притягиваются к отрицательно заряженной поверхности металла (Ме). На границе металл - раствор возникает двойной электрический слой (рис.9.2). Разность потенциалов, возникающая между металлом и раствором, называется электродным потенциалом или окислительно-восстановительным потенциалом электрода φМеn+/Ме (φOx/Red в общем случае). Металл, погруженный в раствор собственной соли, является электродом (раздел 10.1). Условное обозначение металлического электрода Ме/Меn+ отражает участников электродного процесса. По мере перехода ионов в раствор растет отрицательный заряд поверхности металла и положительный заряд раствора, что препятствует окислению (ионизации) металла. Параллельно с процессом окисления протекает обратная реакция - восстановление ионов металла из раствора до атомов (осаждение металла) с потерей гидратной оболочки на поверхности металла: Меn+ * m Н2О(р) + nе- восстановление Ме(к) + m Н2О. С увеличением разности потенциалов между электродом и раствором скорость прямой реакции падает, а обратной реакции растет. При некотором значении электродного потенциала скорость процесса окисления будет равна скорости процесса восстановления, устанавливается равновесие: Меn+ * m Н2О(р) + nе- D Ме(к) + m Н2О. Для упрощения гидратационную воду обычно в уравнение реакции не включают и оно записывается в виде Меn+ (р) + nе- D Ме(к) или в общем виде для любых других окислительно-восстановительных систем: Потенциал, устанавливающийся в условиях равновесия электродной реакции, называется равновесным электродным потенциалом. В рассмотренном случае процесс ионизации в растворе термодинамически возможен, и поверхность металла заряжается отрицательно. Для некоторых металлов (менее активных) термодинамически более вероятным является процесс восстановления гидратированных ионов до металла, тогда их поверхность заряжается положительно, а слой прилегающего электролита - отрицательно Уравнение Нернста — уравнение, связывающее окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, и стандартными электродными потенциалами окислительно-восстановительных пар. , где · — электродный потенциал, — стандартный электродный потенциал, измеряется в вольтах; · — универсальная газовая постоянная, равная 8.31 Дж/(моль·K); · — абсолютная температура; · — постоянная Фарадея, равная 96485,35 Кл·моль−1; · — число молей электронов, участвующих в процессе; · и — активности соответственно окисленной и восстановленной форм вещества, участвующего в полуреакции. Если в формулу Нернста подставить числовые значения констант и и перейти от натуральных логарифмов к десятичным, то при получим |