Главная страница
Навигация по странице:

  • Горизонтально-расточные станки

  • При координатном методе

  • Координатно-расточные станки

  • Агрегатно-расточные станки

  • 2.4. Отделка основных отверстий в корпусных деталях

  • Тонкое или алмазное растачивание

  • Внутреннее планетарное шлифование

  • 2.5. Обработка вспомогательных отверстий в корпусных деталях

  • Основы технологии машиностроения. Технологический процесс и его структура


    Скачать 20.51 Mb.
    НазваниеОсновы технологии машиностроения. Технологический процесс и его структура
    Анкорotvety_k_gosam_MZ_410110u.docx
    Дата25.12.2017
    Размер20.51 Mb.
    Формат файлаdocx
    Имя файлаotvety_k_gosam_MZ_410110u.docx
    ТипДокументы
    #12879
    страница7 из 13
    1   2   3   4   5   6   7   8   9   10   ...   13

    Развертывание отверстий является основным методом чистовой обработки, которым обеспечивается 6-9 квалитет. Шероховатость поверхности составляет 0,63 - 1,25 мкм. Развертывание применяют после сверления, зенкерования или растачивания. Развертки могут быть цельными или насадными с пластинами из быстрорежущей стали или твердого сплава. Развертка является калибрующим инструментом. Ее применение обеспечивает высокую точность только при совмещении осей развертки и отверстия. Для этого используют плавающие патроны и оправки (рис. 2.16, а). Для отверстий диаметром более 25 мм применяются самоцентрирующиеся развертки с плавающими пластинами (рис. 2.16, б).



    Рис. 2.16 Средства совмещения осей развертки и отверстия а – плавающая оправка; б – самоцентрирующаяся развертка

    Для чистовой обработки отверстий применяют расточные блоки с плавающими пластинами из быстрорежущей стали или с напайками из твердого сплава. Блок свободно устанавливается в паз оправки с возможностью перемещения в радиальном направлении и самоценрируется по отверстию аналогично пластинам развертки на рис. 2.16, б.

    В серийном производстве широко применяют комбинированный инструмент (рис. 2.17).



    Рис. 2.17 Комбинированный инструмент для обработки отверстий а – сверло-развертка; б – сверло-зенкер-развертка

    При этом осуществляются различные виды черновой и чистовой обработки одной или нескольких поверхностей: сверление, зенкерование, развертывание, растачивание, подрезка торцев. Это повышает производительность, точность обработки и сокращает номенклатуру режущего инструмента.

    Горизонтально-расточные станки являются основным оборудованием для получения отверстий. Компоновка этого станка представлена на рис. 2.18.



    Рис 2.18 Компоновка горизонтально-расточного станка 1 – шпиндельная бабка; 2 – поворотный стол; 3 - стойка

    Движение подачи по координате Z осуществляется шпиндельной бабкой 1, которая имеет возможность перемещаться в вертикальном направлении вдоль стойки 3 по координате Y. Поворотный стол 2 имеет перемещение в поперечном направлении по координате X. Движение резания осуществляется вращением. На этих станках можно выполнять различные виды обработки, в том числе фрезерование, (рис. 2.19).

    Точность расположения основных отверстий относительно технологических баз и точность межосевых расстояний при растачивании основных отверстий на горизонтально-расточных станках достигается одним из следующих способов: по разметке, методом пробных ходов, координатным методом и с помощью кондукторов.

    При обработке по разметке кернением намечают центр отверстия и циркулем проводят окружность. Затем совмещают ось шпинделя с центром будущего-отверстия, которое затем обрабатывается различньм инструментом. Указанным методом обеспечивается точность в пределах 0,05 мм.

    При обработке методом пробных ходов отверстия размечают и предварительно обрабатывают по 7 квалитету с некоторым припуском по диаметру. В отверстия вставляют оправки-калибры и измеряют положение отверстий относительно баз, а также межосевые расстояния. Затем отверстия растачивают снова, учитывая результаты замеров в виде поправок в положение шпинделя. Повторное растачивание производится в размер или с припуском для следующей корректировки положения отверстий с помощью оправок-калибров. Точность положения отверстий достигает 0,02 мм.
    Рис. 2.19 Схемы обработки различных поверхностей на горизонтально-расточном станке - сверление, развертывание, нарезание резьбы метчиком, зенкерование (схемы а, I. II, III, IV соответственно): - фрезерование (схема б-I) цилиндрической, торцовой (схема б-II), концевой (схема б-III), угловой (схема б-IV) фрезами; - растачивание: сквозных отверстий (схема в-I), с подрезкой торца (схема в-II), подрезка торца (схема в-III), получение конической поверхности (схема в-IV);

    - обработка различных поверхностей с использованием дополнительных приспособлений:

    горизонтальных плоскостей с помощью угловой фрезерной головки (схема г-I); взаимно перпендикулярных плоскостей с помощью поворотной (на 90°) фрезерной головки (схема г-II); наружной поверхности, торца и кольцевой канавки с помощью планшайбы с радиально перемещаемой ползушкой (схема г-III)

    При координатном методе обработки отверстий выбирают систему координат, которая совпадает с технологическими базами. При настройке станка ось шпинделя совмещают с началом системы координат. Затем последовательно при растачивании отверстий шпиндель устанавливают в требуемое положение перемещением стола станка по координате X, а шпиндельной бабки по координате Y с помощью лимбов станка. Точность установки по лимбам составляет 0,08-0,2 мм.

    Для повышения точности обработки установку стола и шпиндельной бабки производят по индикатору с использованием концевых мер. В данном случае стол и бабку в необходимое положение предварительно устанавливают по лимбу. Затем на специальную опору кладут концевую меру и по индикатору выводят стол и бабку на более точную позицию (рис. 2.20). Это позволяет повысить точность позиционирования шпинделя до 0,04 - 0,06 мм. Вышеуказанные методы достаточно трудоемки и применяются в мелкосерийном производстве. Современные горизонтально-расточные станки оснащены оптическими системами отсчета перемещений с ценой деления 0,01 мм, что позволяет быстро устанавливать шпиндель станка в требуемое положение. В последние десятилетия в мелкосерийном производстве широко используются станки с числовым программным управлением (ЧПУ), в которых установка шпинделя и стола осуществляется за счет управления электроприводом по программе, записанной на бумажном или магнитном носителе. Точность установки составляет ± 0,02 мм. Большое распространение получили станки с автоматической сменой инструмента (рис. 2.22).

    Магазины этих станков содержат большой набор разнообразных инструментов (до 100 штук). Такие станки работают в автоматическом режиме. Извлечение необходимого инструмента из магазина, снятие и закрепление его в шпинделе, а также перемещение стола и бабки в рабочую позицию на этих станках осуществляется без участия обслуживающего персонала.

    При обработке отверстий в серийном и массовом производстве широко применяются кондукторы. Простейшим кондуктором является листовой шаблон толщиной 10-12 мм, который накладывают на корпусную деталь или устанавливают перед ней на столе станка. При обработке ось шпинделя станка совмещают с осями отверстий в шаблоне. Точность линейных размеров при этом методе достигает 0,08...0,2мм. В крупносерийном производстве используют более сложные кондукторы в виде специальных приспособлений. Эти кондукторы имеют точно расположенные отверстия в виде кондукторных втулок, установленных на опорах. Кондуктор закрепляется на столе станка. Кондукторные втулки могут устанавливаться до отверстия, за ним, до и после отверстия или создавать двойное переднее направление борштанги.

    Рис. 2.21 Способы установки борштанги в кондукторных втулках при растачивании отверстий а – с передним направлением; б – с задним направлением; в – с передним и задним направлениями; г – с двойным передним направлением

    1 – заготовка; 2 – элементы приспособления

    В двух первых случаях (рис.2.21,а;б) необходимо обеспечить соосность шпинделя и втулки, а борштанга должна быть жестко соединена со шпинделем. В третьем и четвертом варианте (рис.2.21,в;г) допускается несовпадение осей борштанги и втулки в пределах 1 - 2 мм. При этом борштанга шарнирно соединяется со шпинделем. При таком соединении точность расположения отверстий не зависит от точности станка, а определяется точностью приспособления. Точность линейных размеров при обработке по кондукторам достигает 0,08 - 0,2 мм.

    Координатно-расточные станки используются для получения отверстий, к точности расположения которых предъявляются повышенные требования. Отечественная промышленность выпускает координатно-расточные станки с вертикальной осью шпинделя. На этих станках можно выполнять те же операции, как и на горизонтально-расточных. Станки можно использовать в качестве измерительных машин для контроля линейных и угловых размеров, а также производить разметку, поверхностей. Станки оснащены оптическими системами отсчета перемещений с точностью позиционирования в пределах 1 мкм.

    Агрегатно-расточные станки применяются в крупносерийном и массовом производстве для одновременной обработки нескольких отверстий в корпусных деталях. Эти станки создаются из унифицированных узлов: силовых головок, столов, стоек и пр. Станки могут иметь различные компоновки с горизонтальным, наклонным или вертикальным расположением шпинделей.

    Столы станков могут быть неподвижными, барабанными или поворотными. Наагрегатных станках выполняются практически те же операции, что и на горизонтально-расточных, при одновременной обработке нескольких отверстий. Агрегатные станки являются специальными и создаются для обработки определенного вида заготовок, производимых в большом количестве. Поэтому применение этих станков требует экономического обоснования.

    Многоцелевые станки (МЦС) предназначены для выполнения большого количества операций без переустановки обрабатываемых деталей и широко применяются в мелкосерийном производстве. Эти станки оснащены системами с ЧПУ и устройствами для автоматической смены инструмента - магазинами. На МЦС выполняют те же операции, что и на расточных станках. Однако применение ЧПУ дает возможность вести обработку не только цилиндрических отверстий, но и отверстий с более сложной конфигурацией. Использование МЦС обеспечивает точность обработки линейных размеров по 6-7 квалитету. МЦС выпускаются с горизонтальным и вертикальным шпинделем.

    Станок имеет горизонтальный выдвижной шпиндель 1. Шпиндельная бабка 2 перемещается по вертикальным направляющим стойки 3. Продольный стол 4 перемещается в горизонтальном направлении перпендикулярно оси шпинделя. На этом столе имеется круглый поворотный стол 5. В устройство для автоматической смены инструмента входит магазин 6 и автооператор 7. Поворотная платформа 8 служит для установки в приспособлении-спутнике очередной заготовки.
    2.4. Отделка основных отверстий в корпусных деталях

    Для получения отверстий высокой точности по 6-7 квалитетам применяют отделочные операции (отделку отверстий). Методами отделки являются: развертывание, тонкое растачивание, планетарное шлифование, хонингование, раскатка роликами и притирка.

    Развертывание является наиболее распространенным методом отделки основных отверстий небольшого диаметра. Ручное развертывание вообще не требует станочного оборудования. Для обработки соосных отверстий разного диаметра используются комбинированные развертки.

    Тонкое или алмазное растачивание выполняют на алмазно-расточных станках, которые обладают высокой жесткостью и виброустойчивостью. Растачивание выполняют резцами с пластинами из быстрорежущего сплава, режущие кромки которых тщательно доведены алмазным кругом или резцами из сверхтвердых материалов (СТМ), к которым относятся, гексанит, эльбор, керметы, минералокерамика. Применяются также алмазные резцы. Процесс растачивания характеризуется высокими скоростями резания - до 1000 м/мин при частоте вращения шпинделя - 6000 - 12000 мин-1 , малыми подачами - 0,05 - 0,3 мм/об и глубиною резания - 0,05 — 0,3 мм. Отклонения геометрической формы (овальность, конусообразность и пр.) после растачивания составляет 3-5 мкм при шероховатости поверхности 0,16 - 0,63 мкм.

    Внутреннее планетарное шлифование применяют преимущественно для отделки крупных отверстий диаметром свыше 150 мм. Однако есть станки, на которых шлифуются отверстия от 10 мм и выше. Схема планетарного шлифования представлено на рис. 2.25.



    Рис. 2.25 Схема планетарного шлифования

    В процессе обработки шлифовальный круг 1 вращается вокруг своей оси (движение I) и совершает планетарное движение относительно оси отверстия (движение II). Осевая подача круга осуществляется возвратно-поступательным перемещением стола с заготовкой 2 (движение III ). Припуск удаляется радиальной подачей круга (движение IV ). Отклонения геометрической формы после шлифования не более 0,04 мм, шероховатость поверхности составляет 0,16 - 0,32 мкм. На координатно-планетарно-шлифовальных станках обеспечивается точность положения осей до 0,01 мм. Недостатком метода является низкая производительность.

    Хонингование применяют для отделки сквозных гладких отверстий диаметром 25...500 мм.



    Рис. 2.26 Схема хонингования

    Сущность хонингования заключается в механической обработке отверстий абразивными брусками, которые вращаются вместе с хоном и совершают возвратно-поступательные движения вдоль оси отверстия (рис.2.26). Бруски в количестве до девяти штук устанавливаются на хонинговальной головке - хоне (рис. 2.27).



    Рис. 2.27 Хонинговальная головка

    Хонинговальная головка состоит из корпуса 1 с брусками 5, штанги 2 с коническим хвостовиком, соединяющим головку со станком, а также штока 3, который получает осевое перемещение от механизма подачи станка и раздвигает конусами 4 абразивные бруски. При хонинговании бруски прижимаются к поверхности отверстия за счет осевого перемещения штока. Раздвижение брусков производится автоматически по мере снятия припуска. Хонингование осуществляется при интенсивной подаче в зону обработки СОЖ. Отклонения геометрической формы после хонингования находятся в пределах 0,003 — 0,004 мм, шероховатость поверхности составляет 0,004 - 0,16 мкм. Недостатком хонингования является невозможность исправить положение оси отверстия относительно базы.

    Раскатка отверстий является методом обработки без снятия стружки. Раскатку выполняют на сверлильных, токарных или специальных станках. Инструментом являются различные по конструкции роликовые раскатки (рис. 2.28).



    Рис. 2.28 Роликовая раскатка 1 – ролики; 2 - сепараторы; 3 – упорные подшипники; 4 - оправка

    Ролики размещаются в сепараторе и расположены равномерно по периметру. Материалом роликов является закаленная инструментальная сталь твердостью HRC 62 - 64. Производительность раскатки выше чем хонингования примерно в пять раз. Раскатку применяют для отделки длинных отверстий в стальных корпусах гидроцилиндров, поршневых насосов и пр. Отклонения геометрической формы после раскатки находятся в пределах 0,005 — 0,008 мм, шероховатость поверхности составляет 0,008 - 0,016 мм.Поверхностный слой при раскатке упрочняется и твердость увеличивается на 20%, что повышает износостойкость изделия. Раскатка также как и хонингование не исправляет положение оси, т.к. инструмент самоустанавливается по отверстию.

    Притирка используется в мелкосерийном производстве для повышения качества поверхности отверстий. Погрешности формы притиркой не исправляются. Притирку осуществляют головками с чугунными или медными притирами, которые прижимаются к поверхности отверстий пружинами (рис. 2.29). Притирка производится качательным движением головки, с перемещением ее вдоль оси отверстия. В качестве СОЖ используется керосин. Шероховатость поверхности после притирки составляет 0,01 - 0,05 мкм.

    2.5. Обработка вспомогательных отверстий в корпусных деталях

    Вспомогательными отверстиями являются крепежные и другие мелкие отверстия, например, под пробки маслоуказателей, для подачи смазки, установки штифтов и пр. Эти отверстия обрабатываются на вертикально-сверлильных (рис. 2.31), радиально-сверлильных (рис. 2.32), горизонтально-расточных (рис. 2.18) или агрегатных станках (рис. 2.23). При обработке отверстий используют различный инструмент, которым выполняют сверление, зенкерование, развертывание, нарезание резьбы, зенковку и цековку (рис.2.33).



    Рис. 2.33 Зенковка и цековка

    Отверстия в заготовках массой до 30 кг обычно обрабатывают на вертикально-сверлильных станках. При большей массе заготовок используют радиально-сверлильные или горизонтально-расточные станки. При единичном производстве сверление отверстий выполняют по разметке. В этом случае точность линейных размеров составляет 0,5 — 1 мм.

    Для уменьшения отклонения оси отверстия от заданного положения сверление выполняют за два или три перехода. При этом отверстие центруют или засверливают сверлом, диаметр которого в 2 - 3 раза меньше отверстия. Отверстия диаметром более 25 - 30 мм после сверления зенкеруют или растачивают.

    Обработку торцов выполняют зенковками, фрезерованием или подрезными резцами с осевой подачей (рис. 2.19, в, III)

    Диаметр отверстий под резьбу делают на 0,04 ... 0,1 мм больше внутреннего диаметра резьбы, тем самым учитывают подъем витков, возникающий при нарезании. Рекомендуемые диаметры сверл под резьбы с различным шагом и диаметром приводятся в нормативных таблицах.

    Перед нарезанием резьбы в отверстиях снимают фаску с помощью конических зенковок, резцов или сверл большого диаметра. Фаску снимают под углом 90° до наружного диаметра резьбы. Нарезание резьбы выполняют машинными метчиками.

    Резьбу с шагом до 3 мм нарезают за один рабочий ход, резьбу с большим шагом нарезают комплектом метчиков за 2 - 3 рабочих хода. Резьбу нарезают с принудительной осевой подачей инструмента, равной шагу резьбы. Для предохранения метчиков от поломки применяют динамометрические патроны, отрегулированные на допустимое предельное значение крутящего момента.

    В условиях серийного производства мелкие отверстия сверлят с применением кондукторов. Направляющими элементами для инструмента в кондуктоpax являются кондукторные втулки. Точность расположения отверстий при обработке по кондукторам составляет 0,1 — 0,2 мм.

    В серийном производстве вертикально-сверлильные станки оснащаются многошпиндельными переналаживаемыми головками с регулируемым межосевым расстоянием. В конструкции головки, представленной на рис. 2.34 передача крутящего момента от ведущего шпинделя к ведомым шпинделям с патронами для крепления сверл осуществляется карданными валами.

    Для сокращения вспомогательного времени на смену инструмента используются вертикально-сверлильные станки с револьверной головкой.

    В крупносерийном и массовом производстве обработку мелких отверстий выполняют на многошпиндельных агрегатных станках различной компоновки.
    1   2   3   4   5   6   7   8   9   10   ...   13


    написать администратору сайта