Главная страница
Навигация по странице:

  • Сабақ 10 Ақпараттық-дидактикалық блок: Транскрипция

  • Альтернативтік сплайсинг

  • Негізгі кешенін құруға қатысатын транскрипция факторлары (GTFs)

  • ДНҚ-ның upstream аймақтарымен өзара әрекеттесетін TФ

  • Функциясы 1. Конститутивті

  • 1. Организмнің дамуына қатысады

  • 2. Сигналға тәуелді

  • Латентті цитоплазмалық факторлар

  • Триптофан

  • Аргинин

  • Қант диабеті

  • Сабақ 11 Прокариоттар

  • Цитология методичка 1-15 сабак. Саба 1 Апаратты дидактикалы топтама


    Скачать 1.99 Mb.
    НазваниеСаба 1 Апаратты дидактикалы топтама
    Дата11.05.2023
    Размер1.99 Mb.
    Формат файлаdocx
    Имя файлаЦитология методичка 1-15 сабак.docx
    ТипДокументы
    #1121468
    страница31 из 43
    1   ...   27   28   29   30   31   32   33   34   ...   43

    Альтернативтіксплайсинг


    Ядролық а-РНҚ процессингінің негізгі ерекшеліктерінің бірі-гетерогендік ядролық РНҚ молекуласының біреуінен процессинг нәтижесінде, құрылымы мен қызметі әр түрлі бірнеше, жетілген, функциональды активті а-РНҚ молекулаларын түзуі мүмкін.

    Бұл құбылыс альтернативтік сплайсинг деп аталады. Оның мәні:

    1. Интрондары қырқылып түскеннен кейінгі а-РНҚ-ғы қалған экзондар бір-бірімен түрлі үйлесімдермен, түрліше ретпен жалғануы мүмкін;

    2. Пре-а-РНҚ-дағы нуклеотидтер жүйесі бір жағдайда интронды құраса, екінші жағдайда экзон болуы мүмкін:

    Көптеген ізашар аРНҚ гендерінің құрамында ондаған, одан да көп экзондар болады. Экзондардың көп болуы алуан түрлі жетілген а-РНҚ-ның түзілуіне мүмкіндік береді.

    Альтернативтік сплайсинг барлық жасушаларда байқалатын құбылыс. Бұл құбылыстың нәтижесінде түрлі мүшелер мен ұлпаларда онтогенездің түрлі кезеңдерінде арнайы қызмет атқаратын алуан түрлі ақуыздың синтезделуін қамтамасыз етеді.

    Альтернативтік сплайсинг құбылысы арнайы белоктардың активтілігіне негізделген. Бұл белоктар пре-а-РНҚ молекуласындағы интрондары бар учаскелерімен немесе экзон- интрон шекараларымен байланысып бір интрондардың қырқылуын тежеп, екінші бір интрондардың алып тасталуына жағдай туғызады. Альтернативтік слайсингтің мысалы ретінде дрозофиланың Broad-Complex генін алайық. Бұл ген дәрнәсілдің ересек шыбынға айналуын қамтамасыз етеді. Шыбынның түрленіп дамуы осы геннің анықтауымен түзілетін экдизон гормонымен бақыланады. Геннің ұзындығы 120 мың жұп нуклеотидке шамалас. Бұл гендегі 10 экзонның түрлі үйлесімдер құрып орналасуына байланысты 15 түрлі а-РНҚ синтезделеді. А-РНҚ-лардың әрқайсысы нақты жасушалар тобында

    транскрипцияланады, және осы экзондардың саны мен үйлесім түрлері әр жасуша типінде түрліше болып ауытқиды.

    Эукариоттар генінің экзон-интрондық құрылымы альтернативтік сплайсингтың болуын ғана емес, сонымен қатар интрондардан ерекше кіші ядролық РНҚ-лардың түзілуін қамтамасыз етеді. Мұндай кіші ядролық РНҚ-лар рибосомалардың түзілуіне қатынасады. Сонымен қатар ферменттер тәрізді әрекет жасайтын РНҚ-лар да болады. Оларды рибозимдер деп атайды. Рибозимдер кірпікшелі қарапайымдылар-Tetrahymena-ға жүргізілген тәжірибелер барысында ашылған (Th.Cech,1982). Рибозимдер тек басқа РНҚ молекулаларына әсер етіп, про-а-РНҚ процессингін қамтамасыз етеді.

    А-РНҚ-ның екі типін ажыратады:

    1. моноцистрондық а-РНҚ-ДНҚ-ның бір цистронына комплементарлы кодондары бар тізбек, бұл а-РНҚ-лардың ең көп бөлігін құрайды.

    2. полицистрондық а-РНҚ-ДНҚ-ның бірнеше аралас цистрондарына сай ақпараты бар тізбек.

    Мысалы, гистиндік белоктың метаболизміне 10-ға жуық арнайы ферменттер қатынасады. Осы 10 ферменттің синтезі жайлы ақпарат бір ғана полицистрондық а-РНҚ- молекуласында жазылған.Прокариоттар мен эукариоттардың ақпараттық РНҚ-ның өмір сүру ұзақтығы түрліше. Көпшілік прокариоттық а-РНҚ небәрі бірнеше минут қана өмір сүреді. (E.Coli –2 мин), ал эукариоттарда 1-4 сағат. Бірақ про-және эукариоттарда нуклеаза ферменттернің әсеріне тұрақты, ұзақ өмір сүретін а-РНҚ кездеседі. Мысалы Bacillus cerus бактериясының а-РНҚ-сы жасушада 6 сағатқа дейін тіршілігін жоймайды.

    Сүтқоректілердің жетілмеген эритроциттеріндегі (ретикулоциттер) а-РНҚ алдымен ядроларда синтезделіп, соңынан цитоплазмаға өтеді. Эритроциттердің дамуының соңғы кезеңдерінде ядролары бұзылады, бірақ олардың а-РНҚ-сы тіршілігін жалғастырып гемоглобиннің глобиндік тізбектерінің түзілуіне қатынасады. Сондай-ақ сирек жағдайда, жұмыртқа жасушаларындағы және өсімдік тұқымдарындағы а-РНҚ бірнеше айлар, кейде жылдар бойы тіршілігін сақтауға қабілетті келеді.

    Эукариоттық жасушаларда а-РНҚ-ның мұндай біршама тұрақтылығы кейбір белоктарға байланысты іске асырылады.

    Бірқатар ғалымдар (Spirin, Beltisina, Leman, 1965; Perry, Kelley, 1968); и Henshaw, 1968 кейбір эукариоттық жасушаларда а-РНҚ цитоплазмаға шықпай, белоктармен байланысқан күйде ядрода қалып қоятынын дәлелдеп көрсеткен. а-РНҚ-ақуыз кешенін Спирин

    «информосома» деген жаңа терминмен атауды ұсынды. Информосомалар жасушалар тіршілігінде трансляция үдерісі кідірген, не тоқтап қалған жағдайда іске қосылады. Мысалы, ұрықтың дамуында гендер активтілігі органогенездің соңғы кезеңдерінде көріне бастайды, сондықтан а-РНҚ информосомалар түрінде болып қызмет атқарады.

    Информосоманың ақуыздары а-РНҚ-ны рибонуклеаза ферменттерінің әсерінен қорғайды. Сонымен қатар бұл белоктар трансляция кезінде ақуыз биосинтезін бақылап дұрыс жүруін қамтамасыз етеді.

    Ашытқы саңырауқұлағынан бастап омыртқалыларға дейінгі барлық эукариоттарда сплайсинг механизмінің ұқсас болуы гетерогендік ядролық РНҚ-ларының және басқа да компонентерінің құрылысы мен қасиеттерінің ұқсастығы сплайсинг құбылысының тірі ағзалар эволюциясының ерте кезеңдерінде байқалып қалыптасқанын көрсетеді. Геннің экзон интрондық құрылымы да ертеректегі феномен болып табылады.

    Мысалы, глюкозаның метаболизміне қатысатын глицеральдегид –3– фосфатдегидрогеназы генінде ядролық және өсімдіктің хлоропластық ДНҚ бірдей бөлігінде 5 интроны болады. Хлоропластар эволюцияда бактериялардың оқшауланған ядросы бар эукариоттық жасушалармен симбиозды тіршілік етуінен шыққан деп санайды. Сондықтанда бұл интрондар арғы тегі эукариоттар мен оқшауланған ядросы жоқ прокариоттарда (бактерияларда) болған.

    Кіші ядролық РНҚ цитоплазмаға шыққаннан кейін 5/- ұшы химиялық модификация ұшырағаннан кейін ғана активтенеді.

    Қайта түзілген химиялық топты, метилденген гуанинді (Г) ақуыздар таниды. Бұл ақуыздар құрамында білгілі бір аминқышқылдардың реті болады. Олар кіші ядролық РНҚ ақуыз кешендерінің цитоплазмадан ядроға өтуін қамтамасыз етеді. Мұнда цитоплазмада про- а-РНҚпроцессингіне және де басқада РНҚ типтерінің түзілуіне қатысады деген сөз.

    Ядролық РНҚ қайта түзілуі тек процессингпен ғана шектелмейді. Структуралық- функциональдық ядролық РНҚ қайта түзілуінде түзетулерде жүреді.

    Түзетулер РНҚ нуклеотидтердің азоттық негіздерінің химиялық модификациясы кезінде жүреді (мысалы, аденозиннің инозинге айналуында). Осындай модификация кезінде сол кодонның және сол кодонмен анықталатын аминқышқылдарының мағанасы өзгереді. Сонымен қатар а-РНҚ қатарына уридилды (У) нуклеотидтер де пайда болуы мүмкін.

    Сондай ядролық РНҚ химиялық модификациясының нәтижесінде цитоплазмада ДНҚ молекуласында (генде) жоқ триплетпен кодталған аминқышқылы синтезделеді.


    Сабақ 10 Ақпараттық-дидактикалық блок:

    Транскрипция – бұл ДНҚ –дан аРНҚ – ға генетикалық ақпаратты көшіру процессі, РНҚ-полимераза көмегімен ядрода өтеді. ДНҚ-ның екі тізбегі қызметіне байланысты ерекшеленеді. Бірінші тізбек – кодтаушы немесе мағыналы, екінші тізбек – матрицалық (ақпараттық). Тек матрицалық тізбек транскрипцияланады.

    ДНҚ транскрипциясы инициация, элонгация және терминации сатыларынан тұратын ДНҚ екі тізбегінің бірінен РНҚ молекуласы синтезделетін матрицалық үдеріс.

    Эукариоттардың РНҚ-полимеразасы өздігінен транскрипцияны инициациялай алмайды, оған жалпы транскрипциялық фактор-ақуызы (ЖТФ) қажет. Ол РНК-полимеразаны ТАТА-бокспен байланыстырады және бұл кешен (РНҚП+ЖТФ) транскрипцияның басталу нүктесіне қарай жылжиды.

    Транскрипция үдерісіне арнайы фермент РНҚ-полимеразамен қатар көптеген инициациялық, элонгациялық және терминациялық реттеуші ақуыз факторлары да қатысады. Мұндай ақуыздар транскрипцияның басталу және аяқталу үдерісін және алғашқы өнімнің деңгейінің реттелуін қамтамасыз ететін гендердің реттеуші қатарларымен байланыс түзеді.

    Эукариоттар транскрипциясының ерекшелігі де сол активті емес ядролық РНҚ түзіледі және постранскрипциялық модификация-процессингті (пісіп-жетілу) жүргізу болып табылады. Процессинг үдерісінде жүреді:

    1. «кэп»- 51ұшына–метилденген гуанозиннің қосылуы

    2. полиадениннің- 31 полиадениндік «құйрықтың»жалғануы

    3. сплайсинг- интрондардың қырқылуы және экзондардың тігілуі

    Посттранскрипциялық модификация


    Транскрипцияның алғашқа өнімі немесе ядролық РНҚ, цитоплазмалық РНҚ қарағанда активті емес (жетілмеген) және одан әлде қайда ұзын болады. Жетілмеген ядролық РНҚ құрамында ақпараты бар, кодталатын қатарлардан (экзондардан) және ішінде ақпараты жоқ немесе кодталмайтын қатардан (интрондар) тұрады.

    Транскрипцияның алғашқа өнімі а-РНҚ, гетерогенді ядролық РНҚ (гя РНҚ) деп аталады немесе про- а-РНҚ, онда 500 - 50000 нуклеотидтер қатары болады.

    Ары қарай РНҚ өзгеріске ұшырап, жетілген функциональды активті а-РНҚ молекуласы (ақуыз биосинтезі жүретін жерге), цитоплазмаға шығуы керек. Бұл үдеріс «процессинг» термині ретінде белгілі

    Гя-РНҚ әртүрлі өзгерістерге ұшырауы мүмкін:

    • Кейбір гендердің транскрипты РНҚ-ы цитоплазмаға өтпейді, жетілген цитоплазмалық РНҚ айналмайды, ядрода-ақ жойылады.

    • Алғашқы әрбір геннің РНҚ транскрипты толықтай процессингке ұшырамайды, тек ядролық РНҚ біраз ғана (25%) бөлігі жетілгена-РНҚ айналады. Қалған 75% ядрода жойылады. Сонымен тек барлық РНҚ тек 5% ғана цитоплазмаға өтеді.

    Ядролық РНҚ жетілген функциональды активтіа-РНҚ айналуы және цитоплазмаға немесе процессингте іске асады:

    1. Ядролық РНҚ-ның цитоплазмаға өтіп, жетілген, функциональды активті а-РНҚ-ға айналуы немесе процессинг мына әрекеттерді қамти жүреді:

    1. «Қалпақ» жалғану немесе «кэп» жалғану. «Кэп» жалғану үдерісі пре-а-РНҚ-ның 51 – ұшына метилденген гуанозиннің жалғануы. Мұны 7 метилгуанин (7-МеГ немесе m7Г) деп атайды, ол 5/ – 5/ арасындаға сирек байланысты түзеді.

    «Кэп» жалғану РНК – полимераза II транскрипцияның инициация сайтынан ажырауына дейін және нуклеотидтердің қырқылуы мен сплайсинг үдерісінің басталуына дейін басталады. Кейде «Кэп» жалғану нуклеотидтердің қант молекуласының қосымша метилденуі 5/-ұшына (7-Мег-5/-РРР-5/), рибозаның 3/ ұшының Г немесе А метилденуі моно- және трифосфаттануына сай келеді.

    «Қалпақ» жалғанудың биологиялық маңызы «сар»-қалпақ а-РНҚ –ны нуклеаза ферменттерінің бұзу әрекетінен қорғайды, сонымен қатар ақуыздың биосинтезіне қатынасатын факторлардың а-РНҚ-ны танып байланысуына көмектеседі. Мұндай 7-МеГ-«қалпақ» гистонды белоктардың а-РНҚ-да болмайды.

    2. Полиадениндік «құйрықтың» жалғануы, а-РНҚ-ның 3/ұшына поли-А-фрагменттің жалғауы екі кезеңнен тұрады:

    а) эндонуклеаза ферменті пре-а-РНҚ-ны (бірінші реттік транскриптті) белгілі учаскеде кеседі.

    б) пре-а-РНҚ-ның кесілгеннен кейінгі түзілген 31 ұшына полиаденилдік фрагмент («құйрық») жалғанады. Бұл үшін арнайы фермент –поли-(А)-полимераза қатынасып субстрат ретінде АТФ-ты пайдаланады, процестің өзін полиаденилдену деп атайды. Жалғанған полиаденилдік фрагмент шамамен 200-ге жуық нуклеотидтен тұрады. Әдетте полиаденилдену пре-а-РНҚ-ның 30% қамти жүрсе, жетілген а-РНҚ тізбегінің -70% жуығын қамтиды.

    Барлық жоғары сатыдағы эукариоттарда (ашытқы саңырауқұлағынан басқа) поли-А-фрагменті жалғанатын сайттан жоғары, солға қарай 11-30 нуклеотидтік арақашықтықтағы учаскеде ААУАААА –жүйесі орналасқан. Бұл жүйе нуклеаза ферментінің кесіп ажыратуға арналған сигналы болуы мүмкін делінеді.

    Көптеген а-РНҚ гистонды ақуыздары 31ұшында полиаденилдену жүрмейді яғни процессинг поли – А жалғанусыз өтеді.

    Процессинг кіші ядролық РНҚ У (У7 snRNA) 57 жұп негіздер экстенсивті комплементарлы жұптасуы гяРНҚ гистонды ақуыздарымен байланысы арқалы іске асырылады.

    • РНҚ сплайсингі - алғашқы транскриптан кодталмайтын қатардың немесе

    интронның қырқылуын және РНҚ-ың қалған фрагменттерінің, кодтаушы қатардың немесе экзондардың тігілуінен жетілген функциональдық активті а-РНҚ молекуласының түзілуін бақылайтын үдеріс.

    Сплайсеосомалар – осы ақуыз кешеніне қатысатыны белгілі. Сплайсинг үдерісіне ферменттік қызмет атқаратын бірқатар белоктар қатынасады:

    1. энергия көзі ретінде қызмет атқаратын белоктар АТФ-азалар;

    2. РНҚ-геликазалар – сплайсинг барысында түзілген қосарлана ширатылған РНҚ-РНҚ тізбектерді тарқатуды және кіші ядролық РНҚ-лар арасындағы РНҚ-РНҚ-лық (мысалы, мя РНК 4- мя РНК 6) өзара әрекеттесулерді бұзу арқылы ДНҚ молекулаларының арасында жаңа байланыстардың түзілуін қамтамасыз ететін ферменттер.

    Олай болса, сплайсинг күрделі үдеріс, оның реакциялары рибонуклеотидтік ірі кешенде, бірнеше РНҚ молекулалары және ондаған белоктардың қатынасуымен жүреді.
    Альтернативтік сплайсинг

    Ядролық а-РНҚ процессингінің негізгі ерекшеліктерінің бірі-гетерогендік ядролық РНҚ молекуласының біреуінен процессинг нәтижесінде, құрылымы мен қызметі әр түрлі бірнеше, жетілген, функциональды активті а-РНҚ молекулаларын түзуі мүмкін.

    Бұл құбылыс альтернативтік сплайсинг деп аталады. Оның мәні:

    • интрондары қырқылып түскеннен кейінгі а-РНҚ-ғы қалған экзондар бір-бірімен түрлі үйлесімдермен, түрліше ретпен жалғануы мүмкін;

    • пре-а-РНҚ-дағы нуклеотидтер жүйесі бір жағдайда интронды құраса, екінші жағдайда экзон болуы мүмкін:

    Көптеген ізашар аРНҚ гендерінің құрамында ондаған, одан да көп экзондар болады. Экзондардың көп болуы алуан түрлі жетілген а-РНҚ-ның түзілуіне мүмкіндік береді.

    Альтернативтік сплайсинг барлық жасушаларда байқалатын құбылыс. Бұл құбылыстың нәтижесінде түрлі мүшелер мен ұлпаларда онтогенездің түрлі кезеңдерінде арнайы қызмет атқаратын алуан түрлі ақуыздың синтезделуін қамтамасыз етеді.

    Альтернативтік сплайсинг құбылысы арнайы белоктардың активтілігіне негізделген. Бұл белоктар пре-а-РНҚ молекуласындағы интрондары бар учаскелерімен немесе экзон-интрон шекараларымен байланысып бір интрондардың қырқылуын тежеп, екінші бір интрондардың алып тасталуына жағдай туғызады. Альтернативтік сплайсингтің мысалы ретінде дрозофиланың Broad-Complex генін алайық. Бұл ген дәрнәсілдің ересек шыбынға айналуын қамтамасыз етеді. Шыбынның түрленіп дамуы осы геннің анықтауымен түзілетін экдизон гормонымен бақыланады. Геннің ұзындығы 120 мың жұп нуклеотидке шамалас. Бұл гендегі 10 экзонның түрлі үйлесімдер құрып орналасуына байланысты 15 түрлі а-РНҚ синтезделеді. А-РНҚ-лардың әрқайсысы нақты жасушалар тобында транскрипцияланады, және осы экзондардың саны мен үйлесім түрлері әр жасуша типінде түрліше болып ауытқиды.

    Эукариоттар генінің экзон-интрондық құрылымы альтернативтік сплайсингтың болуын ғана емес, сонымен қатар интрондардан ерекше кіші ядролық РНҚ-лардың түзілуін қамтамасыз етеді. Мұндай кіші ядролық РНҚ-лар рибосомалардың түзілуіне қатынасады.

    Сонымен қатар ферменттер тәрізді әрекет жасайтын РНҚ-лар да болады. Оларды рибозимдер деп атайды. Рибозимдер кірпікшелі қарапайымдылар-Tetrahymena-ға жүргізілген тәжірибелер барысында ашылған (Th.Cech,1982). Рибозимдер тек басқа РНҚ молекулаларына әсер етіп, про-а-РНҚ процессингін қамтамасыз етеді.

    А-РНҚ-ның екі типін ажыратады:

    1. моноцистрондық а-РНҚ-ДНҚ-ның бір цистронына комплементарлы кодондары бар тізбек, бұл а-РНҚ-лардың ең көп бөлігін құрайды.

    2. полицистрондық а-РНҚ-ДНҚ-ның бірнеше аралас цистрондарына сай ақпараты бар тізбек.

    Мысалы, гистиндік белоктың метаболизміне 10-ға жуық арнайы ферменттер қатынасады. Осы 10 ферменттің синтезі жайлы ақпарат бір ғана полицистрондық а-РНҚ-молекуласында жазылған.Прокариоттар мен эукариоттардың ақпараттық РНҚ-ның өмір сүру ұзақтығы түрліше. Көпшілік прокариоттық а-РНҚ небәрі бірнеше минут қана өмір сүреді. (E.Coli –2 мин), ал эукариоттарда 1-4 сағат. Бірақ про-және эукариоттарда нуклеаза ферменттернің әсеріне тұрақты, ұзақ өмір сүретін а-РНҚ кездеседі. Мысалы Bacillus cerus бактериясының а-РНҚ-сы жасушада 6 сағатқа дейін тіршілігін жоймайды.

    Сүтқоректілердің жетілмеген эритроциттеріндегі (ретикулоциттер) а-РНҚ алдымен ядроларда синтезделіп, соңынан цитоплазмаға өтеді. Эритроциттердің дамуының соңғы кезеңдерінде ядролары бұзылады, бірақ олардың а-РНҚ-сы тіршілігін жалғастырып гемоглобиннің глобиндік тізбектерінің түзілуіне қатынасады. Сондай-ақ сирек жағдайда, жұмыртқа жасушаларындағы және өсімдік тұқымдарындағы а-РНҚ бірнеше айлар, кейде жылдар бойы тіршілігін сақтауға қабілетті келеді.

    Эукариоттық жасушаларда а-РНҚ-ның мұндай біршама тұрақтылығы кейбір белоктарға байланысты іске асырылады.

    Бірқатар ғалымдар (Spirin, Beltisina, Leman, 1965; Perry, Kelley, 1968); и Henshaw, 1968 кейбір эукариоттық жасушаларда а-РНҚ цитоплазмаға шықпай, белоктармен байланысқан күйде ядрода қалып қоятынын дәлелдеп көрсеткен. а-РНҚ-ақуыз кешенін Спирин «информосома» деген жаңа терминмен атауды ұсынды. Информосомалар жасушалар тіршілігінде трансляция үдерісі кідірген, не тоқтап қалған жағдайда іске қосылады. Мысалы, ұрықтың дамуында гендер активтілігі органогенездің соңғы кезеңдерінде көріне бастайды, сондықтан а-РНҚ информосомалар түрінде болып қызмет атқарады.

    Информосоманың ақуыздары а-РНҚ-ны рибонуклеаза ферменттерінің әсерінен қорғайды. Сонымен қатар бұл белоктар трансляция кезінде ақуыз биосинтезін бақылап дұрыс жүруін қамтамасыз етеді.

    Ашытқы саңырауқұлағынан бастап омыртқалыларға дейінгі барлық эукариоттарда сплайсинг механизмінің ұқсас болуы гетерогендік ядролық РНҚ-ларының және басқа да компонентерінің құрылысы мен қасиеттерінің ұқсастығы сплайсинг құбылысының тірі ағзалар эволюциясының ерте кезеңдерінде байқалып қалыптасқанын көрсетеді. Геннің экзон интрондық құрылымы да ертеректегі феномен болып табылады.

    Мысалы, глюкозаның метаболизміне қатысатын глицеральдегид –3– фосфатдегидрогеназы генінде ядролық және өсімдіктің хлоропластық ДНҚ бірдей бөлігінде 5 интроны болады. Хлоропластар эволюцияда бактериялардың оқшауланған ядросы бар эукариоттық жасушалармен симбиозды тіршілік етуінен шыққан деп санайды.

    Сондықтанда бұл интрондар арғы тегі эукариоттар мен оқшауланған ядросы жоқ прокариоттарда (бактерияларда) болған.

    Кіші ядролық РНҚ цитоплазмаға шыққаннан кейін 5/- ұшы химиялық модификация ұшырағаннан кейін ғана активтенеді.

    Қайта түзілген химиялық топты, метилденген гуанинді (Г) ақуыздар таниды. Бұл ақуыздар құрамында білгілі бір аминқышқылдардың реті болады. Олар кіші ядролық РНҚ ақуыз кешендерінің цитоплазмадан ядроға өтуін қамтамасыз етеді. Мұнда цитоплазмада про- а-РНҚпроцессингіне және де басқада РНҚ типтерінің түзілуіне қатысады деген сөз.

    Ядролық РНҚ қайта түзілуі тек процессингпен ғана шектелмейді. Структуралық-функциональдық ядролық РНҚ қайта түзілуінде түзетулерде жүреді.

    Түзетулер РНҚ нуклеотидтердің азоттық негіздерінің химиялық модификациясы кезінде жүреді (мысалы, аденозиннің инозинге айналуында). Осындай модификация кезінде сол кодонның және сол кодонмен анықталатын аминқышқылдарының мағанасы өзгереді. Сонымен қатар а-РНҚ қатарына уридилды (У) нуклеотидтер де пайда болуы мүмкін.

    Сондай ядролық РНҚ химиялық модификациясының нәтижесінде цитоплазмада ДНҚ молекуласында (генде) жоқ триплетпен кодталған аминқышқылы синтезделеді.

    ТФ әсер ету механизмі

    Осы негізде ТФ-дың үш класы бөлінеді:

    • Негізгі кешенін құруға қатысатын транскрипция факторлары (GTFs), инициация кешенін қалыптастыруға қатысады.Олардың ішіндегі ең маңыздылары TFIIA, TFIIB, TFIID, TFIIE, TFIIF және TFIIH. Олар барлық клеткаларда болады және екінші класстағы РНҚ полимеразасымен транскрипцияланған гендердің промотормен өзара әрекеттеседі.


    ДНҚ-ның upstream аймақтарымен өзара әрекеттесетін TФ (геннің кодталатын аймағының екінші жағында орналасқан промотордың жоғарғы жағында орналасқан аймақтар)

    Индустрияланған TФ алдыңғы классқа ұқсас, бірақ активтендіруді немесе тежеуді қажет етеді

    Функциясы

    1. Конститутивті - барлық уақытта барлық жасушаларда болады - транскрипцияның негізгі факторлары, Sp1, NF1, CCAAT..

    2. Активті (белгілі бір жағдайларда белсенді)

    1. Организмнің дамуына қатысады (арнайы жасуша) - экспрессия қатаң бақыланады, бірақ экспрессияланғанда қосымша белсенділікті қажет етпейді - GATA, HNF, PIT-1, MyoD, Myf5, Hox, Winged Helix.

    2. Сигналға тәуелді - іске қосу үшін сыртқы сигнал қажет

    1. Жасушадан тыс сигналға тәуелді - ядролық рецепторлар

    2. жасушаішілік сигналға тәуелді - төмен молекулалық салмағы бар жасушаішілік қосылыстармен белсендірілген - SREBP, p53, бір ядролық рецепторлар

    3. рецептор- тәуелдіге байланысқан мембрана - сигнал беру каскаданың киназаларымен фосфорділденеді

    1. Резидентті ядролық факторлар - активтенуіне қарамастан ядрода орналасқан - CREB, AP-1, Mef2

    2. Латентті цитоплазмалық факторлар - белсенді емес жағдайда цитоплазмада локализацияланған, активтенгеннен кейін олар ядроға - STAT, R-SMAD, NF-kB, Notch, TUBBY, NFAT бөлінеді.

    Тұқым қуалайтын ақпаратты іске асыру процесінде ТФ-нің маңызды рөліне байланысты, кейбір адам аурулары TF гендеріндегі мутациялардан туындауы мүмкін.

    Төрт әріппен (төрт азотты негіздер -А, Г, Ц және Т) жазылған генетикалық ақпараттың полипептидтік тізбектегі жиырма әріпке (аминқышқылдары) аударылу механизмін генетикалық код деп атайды, яғни ақпарат нуклеотидтер қатарынан аминқышқылдар қатарына аударылады.

    ДНҚ-ғы генетикалық ақпарат нуклеотидтер қатары түрінде жазылған (кодталған). Ф.Крик және оның әрітестері кодталудың негізгі ұстанымдарын ұсынған және оны «генетикалық кода» деп атады. Ф.Крика оны «молекулалық биологияның кілті, екі полимерлік тілдің – полинуклеотидтік тілмен полипептидтік тілдің байланысы» деп қарастырады. Генетикалық код 1965 ж. (Ниренберг М., Корана Г., Ледер П.) толық анықталынып оның негізгі қасиеттері құрастырылды.

    Генетикалық кодтың қасиеттері:

    1.Триплеттілігі, яғни үш азотты негіз (триплет немесе кодон) полипептидтік тізбектегі бір аминқышқылын анықтайды;

    2. Үздіксізділігі немесе генетикалық код арасында үтір жоқ - тізбектеліп жазылған кодондар арасында тыныс белгілері болмайды және ақпарат үздіксіз оқылады;

    3. Полярлылығы- ақпараттың оқылуы тек бір бағытта 51-31жүреді;

    4. Қайта жабылмайтындығы кодондар бір бірін жаппайды, әр нуклеотид тек бір кодонның құрамына кіреді, қатар тұрған басқа кодондар құрамына ене алмайды, сондықтанда кодон генетикалық ақпаратың оқылуының элементарлық бірлігі деп саналады;

    5. Коллинеарлылығы ДНҚ қатарындағы кодондардың реті ақуыздың полипептидтік тізбегіндегі аминқышқылдарының ретіне сай келеді;

    6. Артықтылығы бір аминқышқылы бірден артық кодон санымен анықталынады. Генетикалық код 64 кодоннан тұрады, оның 3 нонсенс-кодондар (мағынасыз), қалғаны ( 61) мағыналы, яғни (20) аминқышқылдарын кодтайды. Сондықтанда бір аминқышқылы 1 - 6 әртүрлі кодондарман анықталынады;

    Генетикалық кодтың артықтылығы толық және толық емес сипатта болады.

    Толық сипаты – бір аминқышқылын анықтайтын кодонның алғашқы екі нуклеотиді (негіздері) бірдей болып келеді де, үшіншісі автоматты түрде қосылып оқылады (мысалы, аланин, пролин, глицин т.б.)

    Толық емес сипаты- әр кодондағы алғашқы екі нуклеотид маңызды, әрі тұрақты болып келеді (цистеин, лизин т.б.). Мысалы, глицин аминқышқылы төрт кодонмен анықталады. Олардың барлығында алғашқы екі негіздер біркелкі ГГ-болса, үшінші негіз А, У, Ц, Г болып алмасуы мүмкін.

    Генетикалық код артықтылығының үлкен биологиялық мәні бар. Өйткені генетикалық кодтың бұл қасиеті мутациялардың летальдық эффектілігін төмендету механизмі болып табылады.

    Генетикалық код артықтылығын түсіндіру мақсатында Крик «тербеліс болжамын» ұсынды. Криктің болжамы бойынша а-РНҚ кодондарына сәйкес антикодондарды тасымалдаушы т-РНҚ-ның әрқилы түрлері антикодонда тұрған бірінші нуклеотидке байланысты екі немесе одан да көп түрлі кодондарды танып, комплементарлы байланыса алады.

    Сонымен қатар жасушаларда нақты бір аминқышқылын тасымалдайтын т-РНҚ-ның бірнеше түрі кездеседі. Химиялық құрылымы әртүрлі мұндай т-РНҚ-ларды изоакцепторлық т-РНҚ деп атайды. Олар түрліше кодондарды танып байланысуға қабілетті келеді. Мысалы, изоакцепторлық аргининдік т-РНҚ-I ЦГГ кодонымен байланысса, аргининдік т-РНҚ-ІІ ЦГУ, ЦГЦ және ЦГА кодондарымен байланысу мүмкіндігі бар.

    7. Арнайылығы - әр кодон тек белгілі бір аминқышқылын анықтайды;

    8.Универсальдығы - генетикалық код барлық тірі ағзаларда бірдей, яғни кез келген триплеттің мағынасы бір және белгілі бір аминқышқылын ғана кодтайды.

    Трансляция - полипептидтік тізбектің (ақуыздың) матрицалық синтезделу үдерісі. Трансляция рибосоманың, р-РНҚ т-РНҚ, а-РНҚ, аминқышқылы және ферменттердің қатысуымен цитоплазмада өтеді, мұнда т-РНҚ-ны өзіне тән аминқышқылымен байланыстыратын аминоацил-т-РНҚ-синтетазаның және полипептидтік тізбекке аминқышқылдарын тізбектейтін пептидил-трансфераза ферменттерінің ролі ерекше. Трансляцияға бос аминқышқылдары емес, керісінше амино-ацил-т-РНҚ-мен (аа-т- РНҚ) активтенген аминқышқылдары қатысады. Әрбір 20 түрлі аминқышқылының өздеріне тән ерекше т-РНҚ болады, яғни әрбір 20 аминқышқылы өздерінің т-РНҚ-ның (аа-т-РНК Мет) акцепторлық ілмектерімен байланысады.

    Рибосомалар екі суббірліктерден тұрады (үлкен және кіші) прокариоттарда 30S және 50 S, ал эукариоттарда 40S және 60S. Кіші суббірлігінде а-РНҚ байланысатын М-орталығы, П-пептидильді және А-аминқышқылдық орталықтары бар. Үлкен суббірліктің кіші суббірлікпен байланыс жасайтын бетінде П- және А орталықтары, сонымен қатар ПТФ-пептидилтрансферазалық орталығы болады.

    Трансляция кезеңдері: инициация, элонгация жәнетерминация.

    Инициация - а-РНК 51 ұшы рибосоманың кіші суббірлігінің М-орталығымен байланысады. Бұл кезде инициациялаушы кодон (АУГ) рибосоманың П-орталығының деңгейінде тұрады, содан кейін инициациялаушы аа-т-РНК Мет рибосомманың үлкен суббірлігінің П-орталығымен комплементарлы байланысады. Соның нәтижесінде а-РНҚ-рибосомалық кешені түзіледі. Ол трансляцияға қатысушылардың кеңістікте дұрыс орналасуын қамтамасыз етеді.

    Элонгация – аминқышқылдар тізбегінің ұзаруы. Мұнда а-РНҚ кодонын т-РНҚ-ның тануы, пептидтік байланыстың түзілуі және рибосоманың жылжуы кезектесіп алмасып отырып жүреді. Бұл аа-т-РНҚ антикодоны мен а-РНҚ кодонының комплементарлы әсерлесуі арқылы өтеді. Әрбір аа-т-РНҚ жоңышқы жапырағына ұқсаған үш құлақты иілген полинуклеотидтік тізбек. Бір ұшында а-РНҚ кодонына комплементарлы үш нуклеотидтен тұратын – антикодон комплементарлы ұстаным бойынша бос А – орталығын толтырады, ал аа- т-РНҚ екінші ұшы аминқышқылын тасмалдайды. Сонымен рибосоманың А- және П орталықтары аа-тРНҚ байланыста болады, ал олардың акцепторлық ілмектерімен байланысқан аминқышқылдары (ПТФ) катализдік орталықта орналасады. Мұндағы пептидил-трансфераза аминқышқылдарын полипептидтік тізбеке тізбектейді. Ақуыздың биосинтезі ары қарай жүру үшін үнемі А-орталығы босап отыруы керек, себебі келесі аминқышқыла бар аа-т-РНК бос А-орталығына енуі қажет сондағана барып рибосома а-РНҚ бойымен жылжып бір триплетке – транслокацияға қадам жасайды. Бұл үш кезеңде өтеді:

    1. т-РНК МетР орталығынан босауы;

    2. т-РНК-дипептидке жылжуы А орталығынан П орталығына;

    3. а-РНҚ рибосома бойымен 51 –31 бағытына қарай бір кодонға жылжуы

    Нәтижесінде аминқышқылдар тізбегі ұзарады.

    Терминация – трансляцияның аяқталуы – рибосома үш мағынасыз УАА,УГА,УАГ (терминатор) кодондардың біреуіне жетіп бос қадам жасайды. Аминқышқылдар тізбегі үзіледі және соңғы т-РНҚ-дан босайды. Рибосома-а-РНҚ кешені ыдырайды. Түзілген полипептидтік тізбек эндоплазмалық тордың каналына түседі де өзінің табиғи (екінші, үшінші немесе төртінші реттік) құрылымдарына ие болады – ақуыз фолдингі жүреді.

    Трансляция инициация, элонгация және терминация факторларына қажет ферменттер энергиясымен өтетін күрделі биокатализдік үдеріс. Сонымен ақуыз биосинтезі транскрипция және трансляция кезеңдері арқылы өтеді. Бір ғана а-РНҚ трансляциясы бірнеше рибосомалардың қатысуымен өтетіндіктенде полисомиялық құрылым түзеді. Эукариоттардың ақуыз биосинтезінің жылдамдығы - t = 37° С 1 сек шамамен 5 аминқышқылы синтезделеді.

    Белок биосинтезі ағза тіршілігінің соңына дейін болатын үдеріс, дегенмен құрсақта, нәресте кезіне және жасөспірім кезінде интенсивті айтарлықтай қарқынды жүреді.

    белок биосинтезі мақсатына қарай мынандай түрлерге бөлінеді:

    Регенерациялық – физиологиялық және репаративті регенерация үдерістеріне байланысты;

    Өсу синтезі – дене көлемімен массаның өсуімен сипатталады;

    Тұрақтандырғыш – ағзаның құрылымдық қалыпын сақтап тұратын, диссимиляция үдерісінде жұмсалатын структуралық белоктардың орнын толтыруға байланысты;

    Функционалды – әртүрлі мүшелердің арнайы қызметімен байланысты (гемоглобин, қан плазмасындағы белоктар, антиденелер, гормондар және ферменттер синтезі).

    Белок синтезінің бұзылу салдары:

    Аминқышқылдарының жетіспеушілігінен;

    Жасушаларда энергия жетіспеушілігінен;

    Нейроэндокринді регуляцияның бұзылуынан;

    Геномда кодталған белоктар құрылымы туралы ақпараттың трансляциясы немесе транскрипция үдерістерінің бұзылысы.

    белок синтезінің айтарлықтай жиі бұзылы, ағзада аминқышқылдарының жетіспеушілігі болып табылады.

    Асқорыту және сіңірілудің бұзылуы салдарынан;

    Тағамда белоктардың төмендеп кету салдарынан;

    Ағзада синтезделмейтін, ауыстырылмайтын аминқышқылдарының аз мөлшерде болуы немесе мүлде болмауы салдарынан.

    Триптофан – узақ уақыт тамақ рационында болмауы салдарынан жас балаларда плазмалық белоктардың төмендеуімен сипатталады.

    Лизин – адамдарда жүрек айну, бас айналу, бас ауруы және шуға сезімталдылығының жоғарылауы байқалады;

    Аргинин – сперматогенездің зақымдалуына алып келеді;

    Гистидин – гемоглобиннің төмендеуімен сипатталады;

    Валин – өсудің тоқтап қалуы, салмақтың жоғалуы, кератоздың (тері ауруы) дамуына алып келеді.

    Қант диабеті – трансляцияның инициация үдерісінің бұзылысынан, рибосомада синтезделетін белоктың синтезі төмендеуінен пайда болады.

    Талассемия (адамдағы туқым қуалайтын анемияның кей бір түрлері) - β–мРНҚ трансляция үдерісінің бұзылысы немесе трансляциядағы белоктық факторлардың жетіспеушілігінен туындайды.

    Дифтерия – жіті инфекциялық ауру болып, жоғары тыныс алу жолдары шырышты қабаты, жүрек қантамыр және жүйке жүйесінің бұзылысымен сипатталады. Лефлера таяқшасы қауіпті токсин болып, ұлпаларға түсу барысында белок биосинтезінің бұзылысын туындатады. мРНҚ-ның рибосомаға бекінуі жүреді.




    Сабақ 11 Прокариоттар гендерінің экспрессиясының реттелуі

    Гендер өнімінің синтезін бақылау механизмдері жалпы атпен гендік реттелу деп аталады.

    Прокариоттар геномы сақиналы ДНҚ молекуласы нуклеоид және бірнеше майда сақиналы ДНҚ-плазмидалартүрінде болады. Олар үлкен үнемділігімен ерекшеленеді, өйткені онда ақпараты жоқ нуклеотидтер қатары болмайды. Прокариот жасушаларында транскрипция және трансляция үдерісітері қатар жүреді.

    Геннің өнімі болып ақуыз молекуласының биосинтезі жайлы ақпараты бар а-РНҚ болып табылады. Ақуыздар (полипептидтер) құрылымдық ақуыздар, ферменттер және реттеуші ақуыздар болып бөлінеді. Құрылымдық ақуыздар жасушалармен мүшелердің негізгі құрылым бірлігі. Ферменттер ағззадағы зат алмасуды қамтамасыз етеді. Реттеуші ақуыздар құрылымдық гендердің белсенділігіне әсер етеді: биосинтезді күшейтеді, төмендетеді немесе басып тастайды.

    Прокариоттарда (ішек таяқшасы E.Coli) кейбір ферменттер сыртқы орта жағдайына тәуелсіз үнемі үздіксіз синтезделеді.

    Ағзада конститутивті (тұрақты) ферменттердің синтезделуі, сол ферменттің синтезін бақылайтын геннің үздіксіз белсенді болатынын көрсетеді. Сонымен бірге бірқатар ферменттер ағзаға қажетті жағдайда (ортада субстраттар болғанда) ғана синтезделеді. Егер жасушаға (ағзаға) ферменттер қажет болмайтын болса, онда олардың синтезделуі яғни ферменттердің активтілігін бақылайтын гендердің де жұмыстары тоқтайды.

    Прокариот гендерінің активтілігінің реттелуі үш деңгейде реттеледі:

    1.Транскрипциялық

    1. Трансляциялық

    2. Посттрансляциялық

    Прокариоттардың тіршілігін қамтамасыз етуде гендер активтілігінің реттелуінің маңызы зор.
    1   ...   27   28   29   30   31   32   33   34   ...   43


    написать администратору сайта