ФУНКЦИИ. Тема Функции
Скачать 1.59 Mb.
|
Применение готовых разложений14.24. Разложить в ряд по степеням х функции: а) y = xln(1 + x2); Решение а) Воспользуемся готовым разложением функции у = ln(1 + х). Заменяя в нем х на х2,получим следовательно, Область сходимости ряда [–1; 1] находим из условия –1 < x2 < 1. б) Воспользуемся биномиальным рядом, представляющим разложение в ряд функции у = (1 + х) . Заменив в нем х на (–х2), получим при разложение функции Умножая обе части разложения на х2, получим Область сходимости ряда (–1; 1) находим из условия 1 < x2 < 1. 14.25. Разложить в ряд по степеням (х – 1) функцию у = ех. Решение Представим функцию у = ех в виде: у = е3е3(x – 1). Это позволяет использовать готовое разложение функции у = ех, в котором х заменяем на 3(х – 1): откуда (записываем ряд в сокращенном виде). Область сходимости ряда (– ; + ) находим из условия – < 3(x – 1) < + . |