Главная страница
Навигация по странице:

  • 10.6. СТРОЕНИЕ ЖИДКОЙ СТАЛИ И ТЕХНОЛОГИЯ

  • 11. ОСНОВНЫЕ РЕАКЦИИ СТАЛЕПЛАВИЛЬНЫХ ПРОЦЕССОВ

  • 11.1. ВЛИЯНИЕ АТМОСФЕРЫ АГРЕГАТА

  • 11.1.1. Переход кислорода из газо -вой фазы в

  • Рис. 11.1.

  • 11.2. 0КИСЛЕНИЕ УГЛЕРОДА

  • |11.2.1.Продукты реакции.

  • Теория и технология производства стали 1. Учебник для вузов. М. Мир, ООО Издательство act


    Скачать 7.23 Mb.
    НазваниеУчебник для вузов. М. Мир, ООО Издательство act
    АнкорТеория и технология производства стали 1.doc
    Дата22.04.2017
    Размер7.23 Mb.
    Формат файлаdoc
    Имя файлаТеория и технология производства стали 1.doc
    ТипУчебник
    #5208
    страница21 из 88
    1   ...   17   18   19   20   21   22   23   24   ...   88


    10.5. ВЛИЯНИЕ ПЕРЕМЕШИВАНИЯ
    Установление наличия (или отсут­ствия) элементов структуры жидкой стали или микронеравновесности рас­плавленного металла для технолога важно еще и потому, что в этом случае возможное внешнее воздействие спо­собно влиять на эту неравновесность. К числу таких внешних воздействий могут быть отнесены: перемешивание жидкого металла (продувка газами, вакуумно-пульсационное воздействие, электромагнитное перемешивание и т. п.), воздействие на металл ультра­звуком, раздробление на мельчайшие капли и т. д. Наиболее распространен­ным из перечисленных способов явля­ется перемешивание жидкой стали инертным газом (обычно аргоном).

    Можно предположить, что дли­тельное перемешивание должно спо­собствовать не только выравниванию состава и температуры, но и достиже­нию микроравновесного состояния расплавленной стали. Не исключено, что приближение к равновесию мик­роскопических состояний расплава, т. е. повышение однородности его структуры ближнего порядка, вызовет изменение физических структурно-чувствительных свойств и улучшит ка­чественные характеристики рафини­рованного таким образом металла.

    Например, экспериментальные данные показывают, что продувка ста­ли (особенно легированной) в ковше аргоном изменяет такие ее структур­но-чувствительные свойства, как плотность (рис. 10.4), кинематическая вязкость (и энергия активации вязкого течения),



    Рис. 10.4. Зависимость плотности стали 40Х

    (испытания при комнатной температуре) от

    расхода аргона при продувке (VAr)

    поверхностное натяжение. Поверхностное натяжение образцов легированной стали, отобранных по ходу продувки металла аргоном в ков­ше, возрастает. Можно предположить, что уменьшение степени микронеод­нородности расплава в результате ин­тенсивного перемешивания при вне-печной обработке вызывает увеличе­ние энергии взаимодействия его структурных единиц, что, в свою оче­редь, приводит к повышению поверх­ностного натяжения. Однако необхо­димы дальнейшие исследования для получения объективной характеристи­ки явления. Пока отсутствует объек­тивный практический критерий оцен­ки степени перемешивания (часто ог­раничиваются внешней картиной пе­ремешивания при моделировании или отбором проб на химический анализ и измерением температуры в несколь­ких точках конкретной емкости с ме­таллом). В то же время получивший распространение термин «гомогениза­ция» расплава объединяет комплекс процессов, в том числе выравнивание химического состава и температуры, достижение равномерного распреде­ления данного состава включений и газов в каждой единице объема метал­ла, а в необходимых случаях рафини­рование в процессе перемешивания металла от ряда определенных вклю­чений; к числу подобных явлений от­носится и ликвидация в процессе пе­ремешивания микронеоднородности расплава.

    10.6. СТРОЕНИЕ ЖИДКОЙ СТАЛИ И ТЕХНОЛОГИЯ
    Теория жидкого состояния стали еще далека от совершенства, однако полу­чено множество доказательств того, что изменения структуры жидкого ме­талла (в зависимости от изменения его состава, степени перегрева и т. д.) дол­жны учитываться при определении ра­циональной технологии плавки.

    Современные исследования пока­зывают, что структура жидкого распла­ва по ряду косвенных признаков по­добна (в зависимости от степени пере­грева и содержания углерода) структуре - или -Fe. Наличие -подобной (более «рыхлой») структуры облегчает условия зарождения новой фазы, дега­зации металла и т. п. Эксперименты показывают, что при ведении плавки, когда изменение состава металла и его температуры соответствует области бо­лее рыхлой структуры, получается сталь более высокого качества с мень­шим количеством газов и включений. На структуру жидкого металла влияют добавки легирующих элементов (нике­ля, марганца, хрома и т. д.). Если леги­рующая добавка способствует разрых­лению структуры жидкого металла, то и условия ведения плавки изменяются (облегчается газовыделение и т. п.). Разрыхлению структуры расплава спо­собствуют сравнительно небольшие добавки таких элементов, как никель, кобальт, медь (этим обеспечивается получение -подобной рыхлой струк­туры). При этом должны улучшаться условия газовыделения (облегчается образование пузырей газов: СО, Н2, N2) и соответственно должны изме­няться и показатели качества металла. Например, если в стали содержится 1— 2 % Ni, то повышаются скорость окис­ления углерода и интенсивность дега­зации, снижается брак стали и т. д.

    Используя имеющиеся данные о зависимости структурно-чувствитель­ных свойств жидкой стали от ее тем­пературы и состава, можно составить диаграмму состояния сплавов на осно­ве железа выше линии ликвидуса. На рис. 10.5 показаны варианты диаграмм состояния систем Fe-C и Fe-Ni, со­ставленные Г. Н. Еланским. Линии выше ликвидуса на этих диаграммах не являются, по представлениям Г. Н. Еланского, показателем поли­морфных превращений в жидких сплавах железа, но свидетельствуют о существовании зон с разными коорди­национными числами (близким к структуре - или -Fe) и о том, что лишь при перегреве

    250 °С осуществ­ляется полный переход к структуре перегретых расплавов.

    Используя имеющиеся данные о строении жидкой стали, можно также определить необходимую степень пе­регрева и продолжительность выдерж­ки металла при этом перегреве для до­стижения полного разупорядочения расплава (термовременная обработка). В зависимости от состава расплава можно определять температурные об­ласти, в которых вследствие «разрых­ления» структуры облегчается проте­кание процессов газовыделения (окисления углерода, дегазации ста­ли), и учитывать возможное влияние строения жидкой стали (сплавов). При известных составе и температуре жид­кой стали можно учитывать возмож­ное влияние ее строения на вязкость, плотность, поверхностное натяжение и другие характеристики. В зависимо­сти от области на диаграмме состоя­ния, через которую проходит путь из­менений состава и температуры спла­ва, можно прогнозировать получение тех или иных свойств после разливки и кристаллизации металла. Объем экс­периментальных данных в этой облас­ти знаний недостаточно полный, од­нако по мере их накопления и по мере роста требований к качеству выплав­ляемого металла практическое ис­пользование диаграмм состояния бу­дет более совершенным.



    Рис. 10.5. Диаграммы состояния Fe-C (а) и Fe-Ni (б) выше линии ликвидуса стжидкость со статистической структурой перегретых расплавов)


    11. ОСНОВНЫЕ РЕАКЦИИ СТАЛЕПЛАВИЛЬНЫХ ПРОЦЕССОВ
    При рассмотрении вопросов, связан­ных с изучением химической термоди­намики металлургических процессов, используют значения констант равно­весия реакций, найденные в лабора­торных условиях. В реальных сталепла­вильных процессах полное состояние равновесия не может быть достигнуто. Это связано прежде всего с тем, что на сталеплавильную ванну непрерывно воздействует атмосфера агрегата (с обычно высоким окислительным по­тенциалом), а также (в меньшей мере) футеровка (подина, стены печи).

    11.1. ВЛИЯНИЕ АТМОСФЕРЫ АГРЕГАТА
    Атмосфера агрегата может иметь окислительный или восстановитель­ный характер. Если атмосфера агрега­та окислительная, то развитие получат окислительные процессы; в восстано­вительной атмосфере (как, например, в доменной печи) будут развиваться восстановительные процессы. Атмос­фера агрегата может служить источни­ком вредных примесей металла (водо­рода, азота, серы), попадание которых в ванну нежелательно. Так как в лю­бом топливе (угле, мазуте, природном газе и т. п.) содержатся углерод и во­дород и при сжигании топлива образу­ются Н20, СО, СО2, в составе атмос­феры (если в агрегат подают топливо) оказываются газы, содержащие кисло­род и водород. Если сжигаемое топли­во содержит серу, то в газах она также будет присутствовать (обычно в виде SO2). При подаче в сталеплавильный агрегат атмосферного воздуха (для сжигания топлива или для продувки ванны) в газах содержится также и азот. Определенное количество (иног­да до 1 %) азота всегда присутствует в газообразном кислороде, используе­мом для продувки ванны.

    В большинстве сталеплавильных агрегатов атмосфера окислительная, т. е. имеет место непрерывный пере­ход кислорода из атмосферы в металл. Это объясняется тем, что парциальное давление кислорода дутья, например, в конвертере >1ООкПа, в воздухе -20 кПа, в продуктах сгорания в ра­бочем пространстве подовых печей 1—10 кПа, а парциальное его давле­ние, равновесное с кислородом, ра­створенным в металле, колеблется в зависимости от содержания углерода, температуры металла и других факто­ров от I0 -3 до 10 -5 Па. Таким образом, paO2/pO2равн=106 —107

    Количество кислорода, перешед­шего за время плавки в ванну, может быть значительным. Так, в мартенов­ских и электропечах (при использова­нии в них топливно-кислородных го­релок) из атмосферы печи в металл переходит (и расходуется на окисле­ние железа и примесей) в зависимости от типа процесса, состава шихтовых материалов и продолжительности плавки от 5 до 30 кг, а в кислородных конвертерах — от 50 до 80 кг кислоро­да на 1 т стали.

    11.1.1. Переход кислорода из газо -вой фазы в металл. Передача кислоро­да из газовой фазы через шлак в ме­талл может осуществляться следую­щим образом:

    а) в результате непосредственного контакта окислительной фазы (О2, СО2, Н2О) с металлом, как это имеет место при продувке ванны воздухом или кислородом, а также в тех случаях, когда металл в печи не покрыт шла­ком (при завалке шихты и в начале плавления, при интенсивном кипе­нии, на выпуске, во время разливки и т.п.);

    б) при помощи корольков (капель) металла, всегда в больших или мень­ших количествах имеющихся в шлаке: 1) корольки, окисляясь на поверхнос­ти контакта с газовой фазой, при пе­ремешивании ванны попадают в ме­талл и переносят кислород; 2) при ин­тенсивном кипении заметная доля ме­талла за время кипения успевает побывать в шлаке в виде корольков и окислиться, в результате чего соответ­ствующим образом изменяется состав ванны;

    в) вследствие перехода кислорода из газовой фазы в металл через шлак. Этот процесс состоит, по крайней мере, из трех звеньев: 1) «окисление» частиц шлака на поверхности газ-шлак; 2) перенос кислорода через слой шлака; 3) переход кислорода в металл на границе металл—шлак.

    На границе атмосфера печи-шлак происходит окисление FeO шлака:

    2(FeO)+{1/2О2 (или Н2О, или 1/2СО2)} →Fe203;

    Оадс +2Fe2+ш +3О2-ш →2FеO -ш.

    Например, отбор проб шлака из мартеновской печи на различных уровнях по высоте показывает, что в верхних слоях содержится больше Fe2O3 и меньше FeO, чем в нижних. В тех случаях, когда имеет место вспе­нивание шлака, различие в химичес­ком составе шлака по высоте может быть значительным. Выравнивание состава шлака по высоте происходит в результате диффузии и перемешива­ния. На скорость этого процесса за­метно влияет гетерогенность шлака. Поскольку коэффициент диффузии Dи вязкость шлака связаны соотно­шением D const, гетерогенность шлакового расплава тем больше, чем больше его вязкость и, следователь­но, меньше коэффициент диффузии Dи ниже скорость массопереноса ок­сидов железа в шлаковом слое. По мере снижения гетерогенности шлака вязкость его уменьшается и состав по высоте выравнивается.

    Металл практически всегда содер­жит кислорода меньше, чем по усло­виям равновесия со шлаком. Этот градиент концентраций определяет пере­ход кислорода через межфазную гра­ницу шлак—металл. Процесс переноса кислорода из шлака в металл обычно записывается в виде:

    (Fe2O3)+Fe=3(FeO),

    (FеО) → [О]+Fеж,

    или

    2FeO2 +Fe=3Fe2+ +4Oш2-,

    ш2+ш2- =[0]+Fеж.

    Обобщенная схема передачи кис­лорода из окислительной атмосферы через шлак в металл представлена на рис. 11.1. Скорость процесса перехода кислорода из шлака через границу шлак—металл значительно выше, чем интенсивность обычной молекуляр­ной диффузии в шлаке, и не лимити­рует процесса передачи кислорода. Выравнивание этих скоростей проис­ходит вследствие значительного уско­рения диффузии в результате интен­сивного перемешивания выделяющи­мися из металла газами при кипении ванны. Однако интенсивность снаб­жения металла кислородом через шлак значительно ниже, чем при непосред­ственном контакте между металлом и окислительной атмосферой. Этим, в частности, объясняются значительно более высокие скорости окисления примесей в конвертерных процессах, где окислитель вступает в контакт не­посредственно с металлом. Интенси­фикация процессов окисления дости­гается также введением кусков руды в результате непосредственного контак­та их с металлом.



    Рис. 11.1. Схема передачи кислорода из газовой фазы через шлак в металл 114

    11.1.2. Продувка металла кислоро­дом или воздухом. При продувке ме­талла воздухом или кислородом в со­став атмосферы агрегата входит также конгломерат пузырей О2, N2, CO и т.д., проходящих через ванну. При малой интенсивности продувки пузы­ри газа пронизывают толщу металла; по мере повышения интенсивности продувки капли металла оказываются взвешенными в потоке газа. В первом случае при невысокой температуре и повышенной вязкости металла через металл будут проходить крупные пу­зыри, запас кислорода в которых дос­таточен для окисления всех атомов железа и его примесей, находящихся на поверхности пузырей. При этом окисляется преимущественно железо, так как число атомов железа значи­тельно больше общего числа атомов примесей (углерода, кремния, марган­ца и т. д.). По мере увеличения интен­сивности продувки, повышения тем­пературы металла и понижения его вязкости размеры пузырей, пронизы­вающих металл, могут уменьшиться настолько, что количество содержа­щегося в таком пузыре кислорода не­достаточно для окисления атомов же­леза и его примесей, условно располо­женных на поверхности такого пузы­ря. Такое состояние называют состоянием «кислородного голода».На основании расчетов установлено,что при радиусе пузырей10-2—10 -3 см кислородный голод уже наблюдается и окисление примесей происходит в соответствии с их химическим срод­ством к кислороду.

    11.2. 0КИСЛЕНИЕ УГЛЕРОДА
    Реакцию окисления углерода часто называют основной реакцией стале­плавильных процессов. При окисле­нии (выгорании) углерода происходит так называемое кипение металла в ре­зультате выделения пузырей СО. В процессе кипения происходят переме­шивание металла, выравнивание его химического состава и температуры, увеличивается площадь соприкосно­вения металла со шлаком, что, в свою очередь, ускоряет протекание всех процессов на границе шлак—металл, из металла удаляются газы и неметал­лические включения. В большинстве случаев в сталеплавильных агрегатах подачу энергии к ванне (топливными горелками, электрической дугой и т. п.) осуществляют сверху и, если бы не кипение, нагрев глубинных слоев ванны был бы весьма затруднен. Угле­род, растворенный в железе, принято обозначать [С].

    |11.2.1.Продукты реакции. Углерод, растворенный в металле, окисляется в основном до СО. Однако при низких концентрациях углерода кроме реак­ции [С] + [О] = СОГ имеет место реак­ция [С] + 2[О] = СО2(Г). По расчетным данным, если при 0,2 % [С] в железе удельный вес реакции образования СО2 составляет всего 0,5%, то при 0,03 % [С] — 10 %. В большинстве слу­чаев можно с достаточной для практи­ческих целей точностью считать, что углерод окисляется с образованием СО. Константа равновесия этой реак­ции Ксможет быть выражена форму­лой

    Кс= рСО/(а[С] * а[0]) =

    = Pco/([C]*f[C]* [0]*f[0]).

    Значения коэффициента активнос­ти f[с] и f [О] до настоящего времени точно не определены. Но поскольку на практике обычно имеют дело с рас­плавами, содержащими малое (< 1 %) • количество углерода и очень малое (<0,1 %) количество кислорода, мож­но принимать значения/[с] и/[О] близ­кими к единице. Следовательно, Кс= рСО /([С]*[О]). При рСО =1 Кс =

    = 1/([С] • [О]), или [С] • [О] = 1/Кс = т.

    Произведение [С] • [О] при нор­мальном атмосферном давлении при­нимают обычно близким к значениям, определенным впервые Вачером и Га­мильтоном (США) для 1620 ºС: т =[С] • [О] =0,0025. Полученные на практике значения [С] и [О] сравнива­ют обычно со значениями, определяе­мыми из равенства [С] -[О] = 0,0025.
    1   ...   17   18   19   20   21   22   23   24   ...   88


    написать администратору сайта