Главная страница
Навигация по странице:

  • 11.5.7. Дефосфорация в восстанови­тельных условиях.

  • 1.6. УДАЛЕНИЕ СЕРЫ ИЗ МЕТАЛЛА 11.6.1. Раствор серы в железе.

  • 11.6.2. Влияние серы на качество стали.

  • 11.6.3. Источники серы.

  • Рис. 11.13.

  • 11.6.5. Десульфурация в сталепла­вильном агрегате.

  • 11.6.6. Десульфурация синтетичес­ким шлаком в ковше.

  • Теория и технология производства стали 1. Учебник для вузов. М. Мир, ООО Издательство act


    Скачать 7.23 Mb.
    НазваниеУчебник для вузов. М. Мир, ООО Издательство act
    АнкорТеория и технология производства стали 1.doc
    Дата22.04.2017
    Размер7.23 Mb.
    Формат файлаdoc
    Имя файлаТеория и технология производства стали 1.doc
    ТипУчебник
    #5208
    страница24 из 88
    1   ...   20   21   22   23   24   25   26   27   ...   88


    11.5.6. Рефосфорация. Если основ­ные условия дефосфорации в какой-то момент плавки не обеспечиваются, то окислившийся и уже перешедший в шлак фосфор может восстановиться и перейти опять в металл (т. е. происхо­дит рефосфорация). Так, например, бывает в конце плавки, когда темпе­ратура высока и в металл вводят рас-кислители. Часть раскислителей мо­жет попасть в шлак (а не только в ме­талл), что вызовет понижение актив­ности кислорода в металле и оксидов железа в шлаке. Готовую плавку вы­пускают в ковш; вместе с металлом в ковш попадает конечный шлак. Этот шлак взаимодействует с футеровкой ковша. Если футеровка ковша выпол­нена из шамота, состоящего из SiO и А12О3, то основность шлака начинает постепенно уменьшаться. Если к тому же в качестве раскислителя использу­ют ферросилиций, то какое-то коли­чество входящего в его состав кремния окислится, образующийся кремнезем перейдет в шлак, также уменьшая его основность. Все это, вместе взятое (высокая температура, уменьшение a(FeO) и CaO/SiO2), создает благопри­ятные условия для обратного перехода фосфора в металл. В результате послед­ние порции стали, выпускаемой из ковша при разливке, могут содержать фосфора заметно больше, чем первые (за счет рефосфорации).

    Если предполагается возможность такого явления, то необходимо в шлак, прикрывающий металл в ков­ше, ввести некоторое количество кус­ковой извести с расчетом, что это обеспечит увеличение вязкости, сни­жение активности и некоторое повы­шение основности шлака. Учитывая способность фосфора быстро восста­навливаться из шлака, обычно прини­мают все меры для обеспечения мак­симального его удаления по ходу плавки. Если, например, в соответ­ствии со стандартом в данной марке стали содержание фосфора должно быть < 0,035 %, то стремятся к концу плавки иметь в металле < 0,010— 0,015 %Р. Лучшим решением пробле­мы является предотвращение попада­ния конечного шлака в ковш вообще («отсечка» конечного шлака).

    Методы борьбы с фосфором все время совершенствуются, и исследо­вания в этом направлении не приостанавливаются. Важен практический опыт. Например, для получения стали с ультранизким содержанием фосфора (< 0,005 %) необходимо учитывать, что некоторое количество фосфора от предыдущей плавки остается в поверх­ностном слое футеровки агрегата. По­этому выплавку сталей с низким со­держанием фосфора нельзя проводить непосредственно после плавки (в этом же агрегате) стали с высоким содержа­нием фосфора.

    11.5.7. Дефосфорация в восстанови­тельных условиях. Специально прове­денными исследованиями установлена возможность связывания фосфора не­посредственно в соединения с щелоч­ноземельными металлами (ЩЗМ) — кальцием, барием с образованием фосфидов типа Са3Р2, Ва3Р2:
    ЗСа + 2[Р] = (Са3Р2);

    ЗВа + 2[Р] = (Ва3Р2);

    З(СаО) + 2[Р] = (Са3Р2).
    ЩЗМ имеют высокое химическое сродство к кислороду, поэтому непос­редственное образование фосфидов возможно лишь в сильновосстанови­тельных условиях, при исчезающе ма­лых значениях рО2 (менее 10 -п-10 -15 Па). В большинстве сталепла­вильных агрегатов трудно создать та­кие условия. При наличии окисли­тельной фазы или кислорода будут иметь место процессы окисления фос­фида (Са3Р2) + 402 = (СаО)3 • (Р2О5) и восстановления фосфора в металл (марганцем, углеродом и др.):
    (СаОМР2О5)+5[Мп]=5(МпО)+3(СаО)+2[Р];

    (СаО)3 • (Р2О5) + 5[С] = 5СОГ+ З(СаО)+2[Р].
    Однако осуществление процесса дефосфорации в восстановительных условиях с удалением фосфора в виде фосфидов позволило бы прово­дить дефосфорацию высоколегиро­ванных сталей без потерь (из-за окисления) таких ценных компонен­тов, как марганец, хром, титан и др. Исследования в этом направлении продолжаются:

    а) хорошо раскисленную сталь об­рабатывают смесью карбида кальция и плавикового шпата; в присутствии иона фтора при 1873 К карбид каль­ция диссоциирует: СаС2 → (Са) + 2[С]; затем происходит образование фосфи­да: 2[Р] + 3(Са) = (Са3Р2);

    б) проводят исследования по орга­низации дефосфорации легированных сталей соединениями типа Na2CO3, К2С03;

    в) организуют вдувание порошко­образных силикокальция, карбида кальция или их смесей в токе аргона в металл в восстановительных условиях;

    г) организуют фильтрацию жид­ких сплавов через фильтр из спечен­ного СаО, покрытого (плакированно­го) шлаком состава SiCa-CaF2 и др.

    1.6. УДАЛЕНИЕ СЕРЫ ИЗ МЕТАЛЛА
    11.6.1. Раствор серы в железе. При ра­створении серы в металле выделяется тепло:
    l/2S2(r) →[S],

    ΔGº= -72 000-10,25 T,
    что является показателем определен­ных связей между серой и железом в растворе. Несмотря на относительно низкую температуру испарения (445 °С), сера в элементарном виде в га­зовую фазу практически не переходит, что также свидетельствует о сильных связях серы с железом. Об этом же сви­детельствует значительное отрица­тельное отклонение раствора серы в чистом железе от закона Генри. На ди­аграмме состояния сплавов Fe-S при 50ат.% S наблюдается максимум, ха­рактерный для образования химичес­кого соединения (в данном случае FeS), поэтому предполагается наличие сильной ионной связи между ионами Fe2+ и S2-. Косвенным свидетельством образования достаточно прочных группировок Fe-S является также на­блюдаемое значительное повышение вязкости железа при увеличении в нем содержания серы. Серу, растворенную в жидком металле, обычно обозначают [S]. Принято считать, что процесс пе­рехода серы из металла в шлак проис­ходит на границе со шлаком:

    [Fe2+] + [S2-] ↔ (Fe2+) + (S2-) или

    ж+[S]↔ (Fе2+) + (82-).

    Можно также представить процесс как взаимодействие на поверхности контакта металл—шлак с образовани­ем ионов серы в шлаке и атомов кис­лорода в металле: [S] + (О2-) = (S2-) +

    + [О]. Иногда это выражение сумми­руют с уравнением распределения кислорода между металлом и шлаком:
    (Ре2+) + (02

    ) = Fеж+[0],

    Реж + [S] = (Fe2+) + (S2-)

    [S] + (О2-) = (S2-) + [О].
    Для упрощения процесс перехода серы из металла в шлак часто условно обозначают

    [S] -»(S).

    11.6.2. Влияние серы на качество стали. Сера обладает неограниченной растворимостью в жидком железе и ограниченной в твердом. Предельная растворимость серы в -Fе при 1365 ºС составляет 0,05 %, а при 1000 °С — 0,013%. В -Fе растворимость серы снижается до 0,002-0,003 % при ком­натной температуре. При кристалли­зации стали по границам зерен выде­ляются застывающие в последнюю очередь сульфиды железа. Железо и сульфид железа образуют низкоплав­кую эвтектику (температура плавле­ния 988 °С), которая в присутствии кислорода из-за образования оксисульфидов плавится при еще более низких температурах. Межзеренные прослойки (обычно на микрошлифе они имеют вид нитей) фазы, богатой серой, при нагревании металла перед прокаткой или ковкой размягчаются, и сталь теряет свои свойства, происхо­дит разрушение металла (краснолом­кость)1. Красноломкость особенно сильно проявляется в литой стали (в виде рванин и трещин), так как суль­фиды и оксисульфиды в этом случае скапливаются по границам первичных зерен. Если сталь хотя бы однократно подвергалась горячей деформации, то вследствие измельчения зерна и обра­зования при деформации новых зерен красноломкость проявляется в гораздо меньшей степени. Однако и в этом случае стремятся получить в стали ми­нимальное содержание серы, так как вредное влияние серы на механичес­кие свойства (в частности, на ударную вязкость) заметно, особенно в направ­лении, поперечном оси прокатки или ковки.
    'Углеродистая сталь приобретает ярко-красный цвет при температуре 900—1000 ºС (цвет каления). Причиной красноломкости может быть также повышенное (более 0,4— 0,5 %) содержание меди; при высоких темпе­ратурах могут образовываться местные скоп­ления структурно-свободной меди, в резуль­тате чего при деформации металла могут воз­никнуть поверхностные надрывы и трещины.
    В катаных или кованых изделиях сульфидные включения обычно вытя­нуты в виде строчек в направлении го­рячей пластической деформации, что нарушает сплошность структуры про­ката или поковки, поэтому в тех слу­чаях, когда нагрузка направлена попе­рек оси деформации, т. е. перпендику­лярно строчкам, стальная матрица раз­рывается по границам раздела с сульфидами; соответственно снижает­ся пластичность стали в поперечных образцах. Это особенно важно учиты­вать при изготовлении изделий, под­вергающихся знакопеременным на­грузкам или нагрузкам в поперечном (относительно оси прокатки) направ­лении (трубы для газопроводов высо­кого давления, резервуары, конструк­ции для платформ морского бурения и пр.). Степень анизотропии свойств уменьшается по мере снижения со­держания серы (рис. 11.12); при сни­жении содержания серы < 0,003 % сте­пень анизотропии приближается к 1.



    Рис. 11.12. Влияние концентрации серы в стальных бесшовных трубах на относитель­ную ударную вязкость КСОТН, т. е. отноше­ние ударной вязкости на поперечных образ­цах к ударной вязкости на продольных (Г) и ударной вязкости на вертикальных образцах к ударной вязкости на продольных образцах (2)
    Сульфиды отрицательно влияют на результаты испытаний поперечных образцов при пониженных температу­рах, заметно повышая порог хладно­ломкости, что, например, особенно важно при разработке технологии производства труб большого диаметра для газопроводов Крайнего Севера. Помимо максимального снижения со­держания серы для получения стали с особыми вязкими свойствами прини­мают специальные меры с целью по­лучить сульфиды в глобулярной фор­ме (а не в виде строчек). Для этого сталь обрабатывают ЩЗМ (кальцием, барием) и РЗМ (лантаном, церием, ит­трием и др.).

    Для ряда конструкционных сталей основные нагрузки приходятся на продольное, а не на поперечное на­правление. Для этих сталей такого низкого (< 0,003 %) содержания серы не требуется. Для ряда марок стали, в частности в автомобилестроении, ма­шиностроении, особые требования предъявляют к обрабатываемости ста­ли на станках-автоматах. Для обеспе­чения высокой обрабатываемости со­держание серы регламентировано до 0,02-0,08 %.

    11.6.3. Источники серы. К основ­ным источникам относится шихта, и прежде всего чугун. В зависимости от содержания серы обычные передель­ные чугуны делят на три категории: 1-<0,030%8, II-<0,050 %S, III-< 0,07 % S. Некоторое количество серы может содержаться в стальном ломе и особенно в замасленной сталь­ной стружке. Какое-то количество серы переходит в металл из топлива (при отоплении печи сернистым мазу­том или коксовым газом, полученным при коксовании сернистых углей).

    Активность серы в жидкой стали зависит от состава расплава. Такие примеси, как углерод, кремний, по­вышают активность серы в жидком расплаве (рис. 11.13). В связи с этим десульфурация чугуна, содержащего большое количество углерода и крем­ния, при прочих равных условиях происходит легче, чем десульфурация обычной стали.

    Сера является поверхностно-ак­тивным элементом, в результате чего на поверхности раздела фаз концент рации серы выше, чем в объеме ра­створа, поэтому наибольший эффект дают такие методы ведения плавки, которые обеспечивают увеличение по­верхности контакта металла с десуль-фурирующей фазой (искусственное перемешивание металла со шлаком, вдувание в металл тонкоизмельчен­ных порошкообразных реагентов и т.д.). Приходится, однако, учитывать, что некоторые другие примеси метал­ла также поверхностно-активны. Если в металле присутствует несколько по­верхностно-активных примесей, то между ними происходит как бы «борьба за поверхность». В металле, например, всегда содержится какое-то количество кислорода. Кислород так­же поверхностно-активен, поэтому в тех случаях, когда в металле много кислорода (металл окислен), на поверх­ности контакта металла с десульфури-рующей фазой присутствует много кислорода и реакция десульфурации идет с трудом. Если содержание кис­лорода в металле снизить до опреде­ленного уровня (< 0,01 %), то адсорб­ция серы становится большей, чем ад­сорбция кислорода, и скорость, и сте­пень удаления серы из металла резко возрастают (рис. 11.14).


    Рис. 11.13. Влияние компонентов расплава на активность серы в жидкой стали
    11.6.4. Элементы-десульфураторы. Элементы, у которых величина ΔGº при образовании соединений с серой меньше, чем при соединении серы с железом, могут быть десульфуратора-ми. Такими элементами являются Mn, Mg, Na, Ca, а также РЗМ, напри­мер церий. Все эти элементы исполь­зуют на практике: натрий — в виде соды при внедоменной десульфура­ции чугуна; магний — в чистом виде



    Рис. 11.14. Взаимозависимость окисленнос-

    ти металла и десульфурации при продувке

    стали известью

    или в виде сплавов (лигатур) с други­ми металлами при модифицировании чугуна, предназначенного для литья, а также при десульфурации передель­ного чугуна (в тех случаях, когда нуж­но иметь чистую шихту); кальций — иногда в виде сплавов с другими ме­таллами, а чаще в виде извести (СаО) или известняка (СаСО3); марганец — в виде сплавов марганца с железом, а также в виде марганцевой руды.

    Очень большим химическим срод­ством к сере обладают РЗМ.

    11.6.5. Десульфурация в сталепла­вильном агрегате. Самым дешевым и доступным десульфуратором является известь (или известняк). Взаимодей­ствие между известью СаО, раство­ренной в шлаке, и серой, растворен­ной в металле, может быть представле­но как: 1) переход серы из металла в шлак и взаимодействие серы и СаО в шлаке (FeS) + (СаО) = (CaS) + (FeO);

    2) взаимодействие на границе ме­талл-шлак Fe + [S] + (СаО) = (CaS) +(FeO),

    K= a(CaS) * a(FeO) / a [S]a (СаО)

    или a[s] = a (cas) • a(Fe0)/K- a (СаО).

    Чем выше в шлаке активность СаО и ниже активность FeO и серы, тем меньше остается серы в металле.

    Для характеристики способности шлака «извлекать» из металла серу ча­сто используют более простое выраже­ние: s = (S)/[S]. Величину 4S называ­ют обычно коэффициентом распреде­ления серы, имея в виду, что сера хо­рошо растворяется и в металле, и в основном шлаке, т. е. в данном случае могут быть использованы положения закона распределения. При повыше-

    нии температуры значение S обычно возрастает, так как при этом улучша­ется растворение частичек извести, взвешенных в шлаке, а также ускоря­ется процесс диффузии серы из объе­ма металла к поверхности металл-шлак.

    Соединение CaS очень прочно. Из­менение энергии Гиббса при образо­вании CaS составляет:

    Саж+1/282 (r) = CaST,

    ΔGº = -702500 + 193,34Г.

    Практически сера, перешедшая из металла в основный шлак, обратно из шлака в металл не переходит (если шлак имеет достаточную основность). В кислых шлаках активность СаО ничтожно мала и в них сера из металла не переходит.

    Влияние состава шлака на распре­деление серы иллюстрирует рис. 11.15, из которого видно, что повысить сте­пень десульфурации (увеличить отно­шение (S)/[S]) можно двумя способа­ми: либо повысить основность шлака, либо понизить его окисленность. При ведении плавки в окислительных ус­ловиях получить малоокисленный шлак (низкие значения a(FеO) ) трудно, поэтому достигаемые значения коэф­фициента распределения серы в этих условиях обычно малы (s < 10).

    11.6.6. Десульфурация синтетичес­ким шлаком в ковше. Десульфурацию металла можно осуществлять в ковше при помощи синтетических шлаков с высокой активностью СаО



    Рис. 11.15. Распределение серы между шла­ком и металлом в зависимости от основнос­ти шлака и o(Feo)
    Шлак выплавляют в отдельном агрегате. Для снижения температуры плавления в состав шлака вводят ряд компонентов (прежде всего А12О3). Основным тре­бованием к химическому составу та­кого шлака является отсутствие окси­дов железа. Удовлетворительные ре­зультаты по десульфурации при обра­ботке металла синтетическим шлаком получаются в том случае, если удается при выпуске металла в ковш полнос­тью отсечь (не допустить попадания) тот шлак, который был в агрегате в конце плавки и который содержит большое количество оксидов железа. Для увеличения поверхности контакта металла и шлака, а также степени пе­ремешивания выпуск металла в ковш, в который предварительно залит жид­кий синтетический шлак, стремятся организовать с большой высоты. Если условия не позволяют установить от­дельный агрегат для приготовления жидкого шлака, то в ковш перед вы­пуском забрасывают смесь из твердых извести СаО и плавикового шпата CaF2. Расход такой смеси не может быть значительным из-за опасности охладить металл, однако даже неболь­шое количество смеси (до 1 % от мас­сы металла) приводит к заметному уменьшению содержания серы. При введении в металл раскислителей зна­чения a [O] и a (FeO) снижаются, умень­шается и содержание серы.

    Интенсивное перемешивание ме­талла со шлаком при выпуске продол­жается всего несколько минут, в тече­ние которых металл выпускают в ковш, поэтому десульфурирующая способ­ность находящегося в ковше шлака при этом полностью не используется. Для более полной десульфурации хорошо раскисленный металл, находящийся в ковше под слоем шлака, подвергают перемешиванию (обычно продувкой инертным газом). Для предотвращения окисления металла атмосферным воз­духом (повышения значения a (Feo)) ковш накрывают крышкой.
    1   ...   20   21   22   23   24   25   26   27   ...   88


    написать администратору сайта