Главная страница
Навигация по странице:

  • Гистерезис вязкости.

  • Рис. 10.2.

  • МАТЕРИАЛОВ НА СВОЙСТВА СТАЛИ

  • 10.4. ТЕРМОВРЕМЕННАЯ ОБРАБОТКА

  • Теория и технология производства стали 1. Учебник для вузов. М. Мир, ООО Издательство act


    Скачать 7.23 Mb.
    НазваниеУчебник для вузов. М. Мир, ООО Издательство act
    АнкорТеория и технология производства стали 1.doc
    Дата22.04.2017
    Размер7.23 Mb.
    Формат файлаdoc
    Имя файлаТеория и технология производства стали 1.doc
    ТипУчебник
    #5208
    страница20 из 88
    1   ...   16   17   18   19   20   21   22   23   ...   88


    10.2. СВОЙСТВА ЖИДКОЙ СТАЛИ
    Жидкая сталь представляет собой сплав железа с различными элемента­ми-примесями. Сочетания этих при­месей многообразны, поэтому свой­ства жидкой стали изменяются в ши­роких пределах. Если определять с вы­сокой точностью зависимость свойств жидкой стали от изменения темпера­туры или концентрации примесей, то немонотонное (скачкообразное) изме­нение свойств характерно для изменения структуры жидкости (разупоря-дочивания или, наоборот, ассоциа­ции атомов, возникновения микро­группировок, расслаивания и т. п.). Свойства жидкости, которые зависят от изменения ее структуры, называют структурно-чувствительными. К их числу прежде всего относят плот­ность, вязкость, поверхностное натя­жение, электрическую проводимость, теплопроводность, скорость распрос­транения звука и др. В металлургии стали наиболее часто используют данные о плотности, вязкости и по­верхностном натяжении.

    Плотность является одним из важ­нейших структурно-чувствительных свойств и определяется выражением уд , где Vуд— удельный объем жидкого (или твердого) металла; Vуд = Vат + Vсв, где Vат — сумма объема атомов или молекул, не изменяющая­ся при изменении температуры и дав­ления; Vсв — свободное пространство между атомами (молекулами), которое изменяется при изменении внешних условий. При изменении Vсв изменит­ся и плотность. Если это изменение имеет скачкообразный характер, то при данных условиях (температуре, концентрации примеси и др.) имеет место изменение строения (структу­ры) жидкой стали.

    Таким образом, перегибы или пе­реломы, наблюдаемые на политермах (кривые изменения температуры рас­плава) или изотермах (кривые измене­ния состава расплава при данной тем­пературе) плотности, свидетельствуют об определенных изменениях строе­ния расплава. В большинстве исследо­ваний отмечен линейный (без переги­бов) характер изменения плотности жидких металлов от температуры, од­нако в некоторых исследованиях на политермах плотности обнаружены перегибы.

    Существует зависимость между ти­пом кристаллической решетки метал­ла и изменением плотности при плав­лении. Металлы, обладающие плот­ными кристаллическими решетками, плавятся с увеличением объема, пони­жением плотности и координацион­ного числа. Металлы, имеющие «рых­лые» кристаллические решетки (тет­рагональные, ромбоэдрические и

    т.д.), плавятся с увеличением плотно­сти и координационного числа и уменьшением удельного объема. К та­ким металлам относятся, например, висмут, сурьма и др. Железо имеет плотную решетку. Плотность железа при 1600 °С составляет

    7,0 г/см3; при дальнейшем повышении температуры она уменьшается.

    Вязкость, так же как и плотность, является важнейшим физико-хими­ческим свойством жидкости. Вяз­кость (внутреннее трение) характе­ризует свойство текучих тел (жидко­стей и газов) оказывать сопротивле­ние необратимому перемещению одной их части относительно другой при сдвиге, растяжении или других видах деформации. Основной закон вязкого течения был установлен Ньютоном:

    S

    где Fтангенциальная (касательная) сила, вызывающая сдвиг слоев жидкости (газа) одного относительно другого; — коэффи­циент пропорциональности, называемый коэффициентом динамической вязкости или вязкостью, Па • с (то же, что и Н • с/м2). Ве­личину, обратную вязкости (1/п), называют текучестью; отношение (v2 — v1)/(z2 –z1\) — градиент скорости течения (быстрота изме­нения от слоя к слою), или скорость сдвига; S—площадь слоя, по которому происходит сдвиг.

    Наряду с динамической вязкостью для характеристики свойств жидкости часто используют величину v = /р (р — плотность жидкости), называе­мую кинематической вязкостью 2/с или см2/с). Приборы, при помощи ко­торых определяют вязкость жидкостей (и газов), называют вискозиметрами, а раздел физики, посвященный измере­нию вязкости, — вискозиметрией (см. разд. 9.3).

    Вязкость воды при 25 ºС равна 0,00089 Па-с, глицерина —0,5 Па • с. Вязкость при 1600 °С чистого железа, по разным данным, составляет 0,0045—0,0060 Па • с, вязкость стали в зависимости от ее состава — 0,005— 0,0085 Па • с, мартеновского шлака — 0,02-0,04 Па • с.

    В жидкостях вязкость является результатом в первую очередь межмоле­кулярного взаимодействия, ограничи­вающего подвижность молекул. Моле­кула из одного слоя может проникнуть в соседний слой лишь при наличии в нем полости, достаточной для про­скальзывания туда молекулы. Образо­вание полости («рыхление» жидкости) связано с расходом энергии. Эта так называемая энергия активации вязкого течения уменьшается с повышением температуры и понижением давления. В 1912г. русский физик Л. И. Ба-чинский, исходя из предположения, что вязкостные свойства жидкости опреде­ляются силами межмолекулярного вза­имодействия, установил зависимость между коэффициентом динамической вязкости и удельным объемом V:

    c/(V-b)

    где с и Ь — постоянные.
    Постоянная bблизка к удельному объему твердого тела в момент плавле­ния V; соответственно разность Vbпредставляет так называемый свобод­ный объем жидкости. Чем больше этот свободный объем, тем меньше ее вяз­кость. В формуле Бачинского влияние температуры на вязкость учитывается через удельный объем жидкости V, по­скольку он непосредственно зависит от температуры. С повышением тем­пературы вязкость уменьшается, так как при этом происходит как бы раз­рыхление жидкости (на что затрачива­ется энергия).

    С учетом разности объемов жидко­го и твердого металлов Vж-Vтв полу­чим = с/( Vж - Vтв). Разность Vж - Vтвхарактеризует степень разрыхления жидкости, или суммарный объем ва­кансий.

    Я. И. Френкель при разработке ки­нетической теории жидкостей предло­жил использовать формулу, характе­ризующую связь между вязкостью и температурой:

    =Aexp(E/RT). ln=lnA+E /RT
    где Е энергия активации вязкого течения, характеризующая энергию, необходимую для перехода частицы (или группы частиц) из од­ного положения равновесия в другое. В соответствии с этой формулой величина являет­ся функцией \/Т, поэтому зависимость вяз­кости от температуры выражается обычно графически в координатах ln -I/Т.

    В случае изменения структуры жидкого металла при температурах, соответствующих изменению строе­ния (структуры) жидкого металла, на графике данной функции наблюдается перелом. При рассмотрении экспери­ментальных данных о вязкости стали необходимо помнить, что примеси, особенно неметаллические включе­ния, заметно увеличивают вязкость. Влияние примесей в жидком железе проявляется в усилении межчастично­го взаимодействия и уменьшении под­вижности атомов железа, приводящих к повышению вязкости. Кроме приме­сей на вязкость стали заметно влияют и другие факторы (неметаллические включения, газы и т. д.).

    Гистерезис вязкости. Известны многочисленные эксперименты, в ходе которых был установлен гистере­зис вязкости жидкой стали, заключа­ющийся в несоответствии значений вязкости, полученных в режимах на­грева и охлаждения металла: вязкость расплава в режиме охлаждения после нагрева часто оказывается выше вяз­кости при первоначальном нагреве. Гистерезис особенно заметен для ле­гированных сталей. При объяснении этого явления иногда используют тер­мин «гетерогенность строения жидкой стали». При этом подразумевается обычно явление сохранения или со­здания медленно распадающихся группировок или решеток, отличаю­щихся наличием определенных свя­зей. Состав и размеры этих группиро­вок зависят от состава стали и техно­логии плавки. Предполагается, что для каждой стали существует опреде­ленная критическая температура, при достижении которой формируется квазигомогенное строение расплава, устраняющее гистерезис вязкости.

    Между свойствами стали и ее вяз­костью в жидком состоянии существу­ет связь. Одновременно с получением квазигомогенного строения жидкости в результате устранения гистерезиса вязкости достигаются максимальные пластичность и ударная вязкость стали

    в твердом состоянии; прочностные свойства стали при этом понижаются.

    Цикл исследований свойств жид­кой стали выполнен уральскими уче­ными П. В. Гельдом, Б. А. Баумом и др. Результаты этих исследований сви­детельствуют о том, что для большин­ства сталей и сплавов характерно раз­личие вязкости и удельного электри­ческого сопротивления при нагреве и охлаждении. Исследователи этого вопроса предполагают, что гистерезис вязкости и электрического сопротив­ления объясняется изменениями в структуре расплавов.

    Наиболее часто встречающиеся (по мнению этих ученых) три формы гис­терезиса вязкости приведены на рис 10.2. Случай, когда гистерезис по­является лишь при определенном пе­регреве над линией ликвидуса (tr-температура начала ветвления поли­терм или начала гистерезиса), отражен на рис. 10.2, а. При большем перегреве положение политерм не изменяется. По мнению предложивших эту теорию Гельда и Баума, в этом случае, по-ви­димому, изменения неравновесной структуры и приближение расплава к состоянию равновесия, начиная с не­которой температуры, происходят мо­нотонно и завершаются при tr. На рис. 10.2, б приведен случай, когда ги­стерезис наблюдается только при на­греве расплава до температур, превы­шающих температуру аномального уменьшения свойств /ан. При этой температуре происходит скачкообраз­ное изменение структуры расплава, что и вызывает аномальное повыше­ние вязкости и быстрый переход в равновесное состояние. Наконец, на рис. 10.2, в иллюстрируется случай, когда гистерезис наблюдается только при нагреве до критической темпера­туры tкр, нагрев до которой при после­дующем охлаждении вызывает ветвле­ние политерм. По мнению Б. А. Баума и Г. В. Тягунова, один из возможных вариантов объяснения такой зависимо­сти состоит в следующем. Расплав име­ет не менее двух структурных составля­ющих, например карбидоподобные комплексы и металлическую матрицу. При нагреве энергия теплового движе­ния частиц возрастает пропорциональ­но абсолютной температуре, устойчи­вость межатомных связей уменьшается немонотонно. Однако эта немонотон­ность в ходе нагрева может не про­явиться на данном свойстве, если из­менения в отдельных структурных со­ставляющих взаимосвязаны и компен­сируют одно другое. Они полностью завершаются только вблизи tкр. В ходе обратного понижения температуры ис­чезнувшая неравновесная структура не восстанавливается, но силы межатом­ного взаимодействия проявляются по-прежнему немонотонно. Так, в упомя­нутой модели атомы углерода снова становятся соседями атомов карбидо-образующих элементов. Это ухудшает условия их взаимного перемещения и обнаруживается в резком возрастании вязкости при tr.

    Все изложенное является лишь од­ним из возможных объяснений на­блюдаемых факторов. В настоящее время нет убедительного толкования наблюдаемых явлений гистерезиса вязкости. Не ясны и другие обнару­женные явления: например, во многих (но не во всех) случаях гистерезис на­блюдается лишь при первичном цикле нагрева и охлаждения; для некоторых легированных сталей (например, ша­рикоподшипниковых) переплав не из меняет гистерезис; для многих групп



    Рис. 10.2. Формы гистерезиса вязкости 108

    легированных сталей чем ниже плас­тичность твердых образцов, тем боль­ше гистерезис.

    10.3. ВЛИЯНИЕ ИСХОДНЫХ

    МАТЕРИАЛОВ НА СВОЙСТВА СТАЛИ
    Зависимость свойств стали от исход­ных материалов является предметом постоянных исследований. Существу­ющий термин «металлургическая на­следственность» характеризует влия­ние металлической шихты на свойства выплавленной из нее стали. По мере роста требований к качеству металла, а также совершенствования методов испытания и контроля качества появ­ляются результаты все новых и новых исследований, в которых установлено различие свойств жидких металлов как при выплавке их в одном стале­плавильном агрегате, но из разных шихт, так и при производстве их раз­личными процессами. Иногда это можно объяснить возможным разли­чием содержания в сталях примесей, наличие которых в металле обычно не контролируется, таких, как свинец, олово, сурьма, мышьяк, висмут и т. п. Однако маловероятно, чтобы случай­ные колебания неконтролируемых примесей могли вызвать однотипные изменения физических свойств метал­лических раплавов.

    Возможной причиной подобных явлений может быть также неравно­весность микроскопических состояний жидкого расплава. Неравновес­ность микроскопического состояния расплава сложного состава связана с рядом причин, в том числе и с тем, что продолжительность диффузионных процессов, определяющих выравнива­ние состава и свойств, может быть больше продолжительности пребыва­ния металла в жидком состоянии. Ис­ходя из существующих представлений, в процессе получения любого сплава даже после расплавления шихты и возникновения макроскопической од­нородности в жидкости продолжает осуществляться переход от разных ти­пов структур ближнего порядка ком­понентов шихты к иной, более разу-порядоченной и более однородной структуре. При этом изменяется ха­рактер как межчастичных взаимодей­ствий, так и распределения атомов.

    Исследования, проведенные со­трудниками МИСиС П. П. Арсентье­вым, А. Ф. Вишкаревым и др., показа­ли заметное различие структурно-чув­ствительных свойств стали нескольких марок, выплавленных из обычной и так называемой первородной (не под­вергнутой ранее переплаву) шихт (рис. 10.3). Различие обнаружено не только в значениях поверхностного натяжения, температур ликвидуса, со-лидуса, кинематической вязкости, но и в таких чисто технологических ха­рактеристиках, как интенсивность протекания процессов окисления примесей.

    Заслуживает внимания обнаружен­ное недавно явление так называемой радиационной наследственности, кото рая проявляется в заметном отличии структуры облученных и необлучен­-



    Рис. 10.3. Зависимость поверхностного натяжения (а), кинематической вязкости (б) стали У8А, выплавленной из обычной (1) и первородной (2) шихты, от температуры
    ­ных образцов после их расплавления и последующей кристаллизации (т. е. «память» о радиации сохраняется даже после полного расплавления образца).

    10.4. ТЕРМОВРЕМЕННАЯ ОБРАБОТКА
    В общем случае можно считать, что после расплавления металл находится в неравновесном состоянии. На ско­рость перехода расплава в состояние, которое можно называть равновес­ным, влияют температура, интенсив­ность и продолжительность переме­шивания (при продувке газами, вакуу-мировании, обработке ультразвуком, воздействии электромагнитным полем и т. п.). Нагрев стали до высоких (1700-1800 ºС и более) температур приводит к быстрому достижению равновесного состояния и стабилиза­ции свойств расплава. При относи­тельно низкой температуре скорость перехода в равновесное состояние мала, и для стабилизации свойств рас­плава требуются большие выдержки. На выдержке расплава при высоких температурах основана так называе­мая термовременная обработка.

    Остановимся на этом более под­робно. Изучение свойств расплавлен­ных образцов стали показывает, что интенсивность и степень завершенно­сти структурных изменений в распла­ве зависят не только от температуры нагрева, но и от продолжительности выдержки при этой температуре. Для полного протекания всех процессов в расплаве требуется определенное со­четание температуры нагрева и дли­тельности выдержки. Обычно чем ниже температура нагрева, тем боль­шая выдержка ей соответствует.

    Уточненный таким образом тем-пературно-временной режим уральс­кие ученые-металлурги Б. А. Баум, Г. В. Тягунов, Г. А. Хасин и др; назва­ли программной термовременной обра­боткой (ПТВО). Режим ПТВО вклю­чает комплекс мероприятий и основан на детальном анализе температурных зависимостей структурно-чувстви­тельных свойств расплавленной стали и выявлении характерных температурдля данной стали (в том числе tкр — критической температуры, нагрев выше которой приводит к появлению гистерезиса вязкости), а также анализе влияния длительности выдержки рас­плава при разных температурах1.

    Обширные исследования, прове­денные на Златоустовском и других металлургических заводах, показали, что использование этих теоретических представлений для организации тех­нологии производства ряда легирован­ных марок стали дает хорошие резуль­таты, приводя к улучшению механи­ческих свойств, снижению брака и т. п.

    В то же время отмечается, что сущ­ность и причины немонотонного ха­рактера изменения свойств жидких сталей в зависимости от температуры до конца не ясны. Эксперименталь­ные данные показывают, что темпера­тура аномального изменения свойств tан и критическая температура tкр (иногда они совпадают, а иногда очень сильно различаются) зависят не только от состава данной стали, но и от предыстории образца.

    Возможной причиной влияния «предыстории» (например, условий выплавки) на свойства выплавленной стали может быть присутствие в ме­талле дисперсной фазы (например, включений тугоплавких оксидов). Эти включения могут попасть в металли­ческую ванну из шихты, при исполь­зовании ферросплавов и других доба­вочных материалов. Настоящий пе­риод характеризуется непрерывным возрастанием доли в шихте высоколе­гированных сталей и сплавов все бо­лее сложного состава. Отходы этих сталей или изделий из них попадают в виде шихты в сталеплавильные агрега­ты. Присутствие мельчайших частичек в металлошихте не контролируется, но может заметно влиять на свойства как жидкого, так и твердого металла. Кро­ме упомянутых трех причин возможны и другие, еще не установленные при чины влияния состава исходных ма­териалов на качество выплавляемой стали.
    1 Более подробно с этой теорией можно ознакомиться в книгах «Жидкая сталь» (Б. А. Баум, Г. В. Тягунов, Г. А. Хасин и др. — М.: Металлургия, 1984. — 206 с.); «Строе­ние и свойства металлических расплавов» (Г. Н. Еланский. — М.: Металлургия, 1991.— 160с.).
    1   ...   16   17   18   19   20   21   22   23   ...   88


    написать администратору сайта