Болезни рыб и основы рыбоводства. Учебники и учебные пособия для студентов высших учебных заведений
Скачать 4.89 Mb.
|
АБИОТИЧЕСКИЕ ФАКТОРЫ СРЕДЫ Среди многообразных физико-химических факторов среды наибольшее значение имеют термический, газовый и солевой составы воды, от которых зависят все биологические процессы, протекающие в водоеме. Химический состав природных вод весьма сложен и изменчив. Он определяется характером почв, составом поверхностного стока, атмосферных осадков, а также связан с уровнем развития промышленности, сельского хозяйства и других отраслей. Природные водоемы являются аккумуляторами всех стоков и поэтому не всегда пригодны для рыбохозяйственных целей. Знание требований рыб и других гидробионтов к составу водной среды и обеспечение их водой надлежащего качества имеют большое практическое значение при рыбохозяйственном освоении и эксплуатации естественных и искусственных водоемов. Для оценки качества воды используют стандартный набор физических, органо- лептических и гидрохимических показателей. Температура воды. Рыбы относятся к пойкилотермным животным, температура тела которых изменяется соответственно температуре воды. У большинства видов она лишь на 0,5—1,0 °С выше температуры воды и может несколько повышаться в период высокой активности рыб. Температура влияет на все жизненные процессы организма: двигательную активность, размножение, питание, рост, обмен веществ, различные физиологические функции. По отношению к температуре рыбы делятся на две экологические группы: теплолюбивые и холодолюбивые. К теплолюбивым относятся рыбы южных и умеренных широт: карповые (карп, толстолобик, белый амур, буффало и многие другие), осетровые, окуневые, кефалевые, а также все аквариумные рыбы. Оптимальный диапазон температур, необходимый для их размножения, роста и развития, находится в пределах 16—30 °С. При температуре 6—8 °С карповые рыбы перестают питаться, а зимой (при температуре 1—2 °С) впадают в оцепенение, не размножаются и не растут. Холодолюбивые рыбы чаще являются обитателями северных широт. Их температурный оптимум 10-20 °С. К ним относятся лососевые (лососи, форель, сиговые), наваги, тресковые и др. Зимой они не впадают в оцепенение, питаются, & некоторые виды способны размножаться. Такое разделение на группы и особенно приведенные температурные диапазоны весьма условны, так как среди рыб встречаются самые разнообразные отклонения. Для каждого вида рыб и разных стадий их развития существует температурный оптимум, а также верхние и нижние пороговые уровни. Значительные отклонения температуры за пределы оптимальных границ являются стресс-факторами, снижающими адаптационные способности организма рыб. Постепенное изменение температурного режима редко представляет опасность для жизни рыб, тогда как резкие перепады (7—10 °С) могут вызывать температурный шок. Поэтому при пересадках рыб из одного водоема в другой необходимо постепенно выравнивать температуру путем смешивания воды разной температуры, не допуская перепада более 3-5 "С. Длительные воздействия пониженных или повышенных температур также вредны для рыб. Так, частые летние понижения температуры вызывают угнетение питания и роста рыб, что в конечном счете приводит к выращиванию физиологически неполноценных сеголетков карпа и других рыб, не способных перенести жесткие условия зимовки. Низкая температура воды зимой (0,1—0,5 °С) оказывает отрицательное влияние: рефлекторное сужение сосудов, замедление кровотока, застой крови в органах, уменьшение частоты дыхания, что приводит к гипоксии и снижению резистентности организма рыб к экто- паразитарным болезням. Слишком высокие температуры также наряду со стрессовым воздействием на организм рыб отрицательно влияют на зоогигие- нический режим в водоемах: способствуют уменьшению содержания в воде кислорода, ускорению разложения органических веществ, усилению размножения сапрофитной микрофлоры и возбудителей заразных болезней. Подобная температурная приспособляемость свойственна большинству паразитов рыб. Например, многие инфекционные агенты — гельминты, рачки — более активны в весенне-летний период, а среди простейших встречаются холодо- и теплолюбивые виды. Поэтому многие болезни рыб носят сезонный характер. Температурный фактор, оказывая влияние на растворимость в воде различных химических веществ, играет важную роль в формировании газового и солевого составов воды, а также в преобладании того или иного спектра химических загрязнителей водоемов. Органолептические показатели воды. При общей оценке качества воды чаще используют такие показатели, как прозрачность, цвет, запах и вкус. Прозрачность воды зависит от количества взвешенных и растворенных в ней минеральных и органических веществ, а в летний период — от развития водорослей. С прозрачностью тесно связан и цвет воды, который чаще отражает содержание в ней растворенных веществ. Прозрачность и цвет воды являются важными показателями состояния кислородного режима водоема и используются для прогнозирования заморов рыб в прудах. Чистая вода, обычно прозрачная и бесцветная, только в толстом слое (столбике) приобретает слабо-голубую окраску. При массовом развитии водорослей вода мутнеет и становится зеленой — этот процесс часто называют «цветением» воды. В период отмирания водорослей вода приобретает желтоватый или бурый оттенок. В Полесской зоне и болотистой местности бурый цвет воды является нормальным, так как он связан с наличием гуминовых кислот, а в южных регионах — это свидетельство загрязнения водоема. В воде всегда содержится некоторое количество взвешенных веществ (органических и неорганических), которые поступают в результате эрозии почвы, сброса сточных вод предприятий, а также образуются в процессе жизнедеятельности гидробионтов (экскременты, корма, иловые отложения и т. д.). Повышенное содержание в воде взвешенных и растворенных органических веществ оказывает на водоем двоякое действие. С одной стороны, они снижают прозрачность и повышают мутность воды, засоряют жаберный аппарат рыб и других гидробионтов, что приводит к нарушению развития икры и личинок рыб, снижению количества корма и его доступности. С другой стороны, они указывают на ухудшение кислородного режима водоемов вследствие большого расхода кислорода на окисление органических веществ и выделение вредных продуктов их распада. Границы содержания вредных взвешенных веществ для рыбохозяйственных водоемов таковы: при содержании 4 тыс. г/м3 может наступить гибель гидробионтов; при 200-300 г/м3 происходят замедление роста рыб, бактериальное поражение жабр и хвоста; при 80-100 г/м3 снижается сопротивляемость к болезням; содержание вредных веществ менее 25 г/м3 безвредно для карпов и 10 г/м3 — для форели. Прозрачность и цветность воды определяют визуально, применяя простые устройства: просмотр специального шрифта через столбик воды, белые диски (Секки) или специально раскрашенные диски. В карповых прудах за норму прозрачности воды считают глубину видимости диска, равную 50 ± 20 % средней глубины пруда. Высокая прозрачность воды свидетельствует о малой продуктивности водоема, слишком низкая — об органическом загрязнении, низком содержании кислорода и возможности замора рыб. Запах воды также характеризует ее качество. Если чистая вода обычно лишена запаха, то в заиленных, заболоченных водоемах, а также при загрязнении их пахучими веществами она приобретает болотный, затхлый или специфический запах ее загрязнителей (фе- нольный, нефтяной и т. д.). Причем он более сильно ощущается в мясе выращиваемых там рыб, так-как они легко адсорбируют посторонние запахи. Освободиться от этих запахов можно промыванием рыбы в чистой воде в течение 2-3 сут. По вкусу можно определить соленость воды, горький привкус и др. Для более точной оценки качества воды проводят лабораторный гидрохимический анализ. Газовый состав воды. В водной среде, как и в атмосфере, содержатся в растворенном виде жизненно необходимые газы: кислород, углекислый газ (диоксид углерода), азот, а также образуются вредные для организма аммиак, сероводород, метан и др. Соотношение концентраций этих газов в воде характеризует зоогигиеническое состояние водоемов и имеет большое практическое значение. Поэтому в комплексе мер профилактики болезней рыб важное место занимает постоянный контроль газового режима и под держание его параметров на оптимальном уровне. В зимовальных прудах содержание газов в воде, в первую очередь кислорода, проверяют не реже одного раза в декаду; анализ воды в нерестовых прудах делают ежедневно на протяжении всего нереста, а в летних прудах — ежедекадно, начиная со дня посадки в них рыбы. Летом анализы на содержание кислорода проводят 2 раза в сутки: утром перед восходом солнца и вечером перед его заходом. Это позволяет своевременно выявить момент падения уровня кислорода и принять меры по предотвращению замора рыб. При индустриальных формах рыбоводства (инкубация икры; производственные процессы в тепловодных и садковых хозяйствах; зимовка рыбы в зимовальных комплексах) контроль за газовым режимом осуществляется постоянно с применением автоматических систем анализа содержания кислорода, углекислого газа (диоксида углерода), температуры и других параметров. Кислород. Обязательным условием для поддержания жизни в водоеме является наличие в воде кислорода. Он поступает из атмосферы, растворяясь при ветровом волнении и перемешивании воды, а также выделяется в процессе фотосинтеза водными растениями. Концентрация кислорода изменяется в зависимости от температуры и атмосферного давления: при низкой температуре и высоком атмосферном давлении растворимость кислорода выше, чем при высокой температуре и низком давлении. Кислород постоянно расходуется на дыхание гидробионтов, окисление минеральных и особенно органических веществ. Следовательно, динамика содержания и баланс кислорода в водоеме тесно связаны с протекающими в нем биологическими и физико-хи- мическими процессами. Разные рыбы неодинаково требовательны к содержанию кислорода. Так, для лососевых его оптимум составляет 9— 11 г/м3, для карповых — 5-10 г/м3. Нижний предел кислорода, не влияющий на здоровье карповых рыб, условно равен 4 г/м3, лососевых — 5 г/м3 (табл. 1). 1. Показатели качества воды прудовых хозяйств
Продолжение Допустимые значения, до Технологическая норма Ввд прудов Показатель Железо, г/м3: общее закисное Хлориды, г/м3 Сульфаты, г/м3 Карповые Форелевые Карповые Форелевые 1,8 0,5 0,2 0,1 25-40 10-30 Карповые 200-300 100-1000 (с учетом природного содержания) Общая численность микроорганизмов, млн кл/мл До 3,0 » 1,0 » 5,0 » 3,0 Форелевые Карповые Форелевые Численность сапрофи- тов, тыс. кл/мл При недостатке кислорода понижается активность рыб, угнетаются питание и рост, нарушается эмбриональное развитие, снижается резистентность организма к неблагоприятным факторам среды и возбудителям болезней. Кислородный порог, вызывающий угнетение дыхания, составляет для лососевых 4,5 г/м3, карпа 1,0 г/м3, карася 0,3 г/м3. Резкое падение содержания кислорода приводит к гипоксии и нередко к гибели рыб от асфиксии (замора). Особенно важно не допускать снижения кислорода в зимовальных прудах, так как при 2,5-3,0 г/м3 карпы начинают беспокоиться, поднимаются в верхние слои воды, скапливаются у притока. Вследствие беспокойного движения рыбы истощаются, в большей степени подвергаются заражению эктопаразитами, причем нередко погибают. Нарушение кислородного режима (снижение концентрации, суточные колебания содержания кислорода и др.) свидетельствует о неблагоприятных зоогигиенических условиях в водоеме, в первую очередь о повышенном органическом загрязнении. В этих случаях возможен не только дефицит, но и пересыщение воды кислородом, что также вредно для организма рыб в связи с опасностью возникновения газопузырьковой болезни. Для нормализации кислородного режима в водоемах применяют различные методы: увеличение проточности воды, аэрацию ее путем разбрызгивания на аэрационных столиках, с помощью насосных установок, а также размещения специальных аэраторов на притоке воды или в различных участках прудов. Летом в воду вносят минеральные удобрения и регулируют кормление рыб так, что бы не допускать залеживания остатков кормов. Зимой на прудах делают проруби, увеличивают водообмен, устанавливают плавучие аэраторы разной конструкции. Кислород в воде определяют методом Винклера или с помощью оксиметров. Диоксид углерода. В воде кроме кислорода всегда содержится растворенный диоксид углерода, который находится в свободном и связанном состояниях в виде гидрокарбонат (НСО3) и карбонат- ионов (СО3'). Они образуются в первую очередь при биохимических процессах, происходящих в водоеме (при дыхании гидробионтов, разложении остатков органических веществ в воде и грунте), а также могут поступать из атмосферы и вымываться почвенными водами. В природных водах эти формы, переходящие одна в другую, находятся в подвижном равновесии, участвуют в буферной системе воды и в круговороте веществ в водоеме. Под воздействием различных факторов среды (температуры, освещенности, содержания органических веществ и количества гидробионтов) возможны значительные колебания содержания диоксида углерода, что приводит к нарушению газового режима и активной реакции среды. Так, летом в период интенсивного развития водорослей («цветения» воды) отмечают резкие суточные колебания диоксида углерода: в светлое время суток количество его резко падает в результате ассимиляции диоксида углерода растениями, а ночью, наоборот, сильно возрастает. Это приводит, в свою очередь, к резким перепадам рН воды — вечером в щелочную сторону (до 9— 10), утром в кислую. Зимой чаще отмечают только повышение количества диоксида углерода, особенно в зимовальных прудах, из-за большой плотности посадки рыб. Все эти изменения оказывают отрицательное воздействие на рыб: прямое токсическое — высоких концентраций или косвенное — за счет нарушения газового режима. Токсические концентрации диоксида углерода для карповых рыб (карпа, толстолобика и др.) составляют около 200 г/м3, для форели — 120-140 г/м3, для линя — 400 г/м3. В прудах содержание диоксида углерода не должно превышать 30 г/м3. Суточные колебания содержания диоксида углерода, кислорода и рН хотя и не вызывают массовой гибели рыб, но сильно влияют на потребление и усвоение рыбами корма, замедляют их рост. В зимовальных прудах увеличение количества диоксида углерода приводит к беспокойству и движению рыб, а следовательно, к преждевременному их исхуданию и поражению эктопаразитами. Сероводород и метан. В природных водах сероводород и метан образуются главным образом при разложении органических веществ. Сероводород встречается также в воде глубоких артезианских скважин, нередко используемых для водоснабжения рыбохозяйственных водоемов. Однако их наличие |