Задание 5. Вычислить интеграл, если область интегрирования
(V) ограничена поверхностями, заданными уравнениями.
№
| Интеграл
| Область интегрирования (V)
| 1
| ,,, xdxdydz
(V)
| y= x, x+ y= 4, x= 0, y + z= 4, z= 0
| 2
| ,,, xdxdydz
(V)
| x+ y= 0, x− y + 4 = 0, x= 0, y+ z= 4,
z= 0
| 3
| ,,, xdxdydz
(V)
| x+ y= 0, x− y− 4 = 0, x= 0,
y− z+ 4 = 0, z= 0
| 4
| ,,, xdxdydz
(V)
| y= x, x+ y+ 4 = 0, x= 0, y − z + 4 = 0,
z= 0
| 5
| ,,, ydxdydz
(V)
| y= x, x+ y= 4, y= 0, y+ z= 4, z= 0
| 6
| ,,, ydxdydz
(V)
| x+ y= 0, x− y+ 4 = 0, y= 0, y + z= 4,
z= 0
| 7
| ,,, ydxdydz
(V)
| x+ y= 0, x− y − 4 = 0, y= 0,
y− z+ 4 = 0, z= 0
| 8
| ,,, ydxdydz
(V)
| y= x, x+ y + 4 = 0, y= 0, y − z+ 4 = 0,
z= 0
| 9
| ,,, xdxdydz
(V)
| y= x2 − 1, y= x+ 1, y+ z= 3, z= 0
| 10
| ,,, xdxdydz
(V)
| y= x2 − 1, y= 1 − x, y+ z= 3, z= 0
| 11
| ,,, ydxdydz
(V)
| x− y2 + 1 = 0, x− y − 1 = 0, x+ z= 3,
z= 0
| 12
| ,,, ydxdydz
(V)
| x− y2 + 1 = 0, x+ y− 1 = 0, x+ z= 3,
z= 0
| 13
| ,,, ydxdydz
(V)
| x+ y2 − 1 = 0, x− y+ 1 = 0, z= x+ 3,
z= 0
| 14
| ,,, ydxdydz
(V)
| x+ y2 − 1 = 0, x+ y+ 1 = 0, z= x+ 3,
z= 0
| 15
| ,,, xdxdydz
(V)
| x2 + y− 1 = 0, x+ y+ 1 = 0, z= y+ 3,
z= 0
| 16
| ,,, xdxdydz
(V)
| x2 + y− 1 = 0, x− y− 1 = 0, z= y+ 3,
z= 0
| 17
| ,,, ydxdydz
(V)
| x= y2, y= x− 2, x+ z= 4, z= 0
| 18
| ,,, ydxdydz
(V)
| x= y2, x+ y− 2 = 0, x+ z= 4, z= 0
| 19
| ,,, ydxdydz
(V)
| x+ y2 = 0, x+ y+ 2 = 0, x− z+ 4 = 0,
z= 0
| 20
| ,,, ydxdydz
(V)
| x+ y2 = 0, x− y+ 2 = 0, x− z+ 4 = 0,
z= 0
| 21
| ,,, xdxdydz
(V)
| y= x2, y= x+ 2, y + z − 4 = 0, z= 0
| 22
| ,,, xdxdydz
(V)
| x2 − y= 0, x+ y− 2 = 0, y+ z− 4 = 0,
z= 0
| 23
| ,,, xdxdydz
(V)
| x2 + y= 0, y= x− 2, y− z+ 4 = 0, z= 0
| 24
| ,,, xdxdydz
(V)
| x2 + y= 0, x+ y+ 2 = 0, y− z+ 4 = 0,
z= 0
| 25
| ,,, ydxdydz
(V)
| x− y− 1 = 0, x+ y− 5 = 0, y= 0,
x+ z− 5 = 0, z= 0
| 26
| ,,, xdxdydz
(V)
| x− y− 1 = 0, x+ y− 5 = 0, x= 0,
x+ z− 5 = 0, z= 0
|
Задание 6. Используя цилиндрическую систему координат, вы- числить интеграл, если область интегрирования (V ) ограничена по- верхностями, заданными уравнениями.
№
| Интеграл
| Область интегрирования (V)
| 1
| ,,, √x2+y2dxdydz
(V)
| x2 + y2 = 2x, z= x2 + y2, z= 0
при x2 + y2 ≤ 2x
| 2
| ,,, √x2+y2dxdydz
(V)
| x2 + y2 = 2x, x2 + y2 + z= 0,
z= −4 при x2 + y2 ≤ 2x
| 3
| ,,, √x2+y2dxdydz
(V)
| x2 + y2 = −2x, z= x2 + y2, z= 0
при x2 + y2 ≤ −2x
| 4
| ,,, √x2+y2dxdydz
(V)
| x2 + y2 = −2x, x2 + y2 + z= 0,
z= −4 при x2 + y2 ≤ −2x
| 5
| ,,, √x2+y2dxdydz
(V)
| x2 + y2 = 2y, z= x2 + y2, z= 0
при x2 + y2 ≤ 2y
| 6
| ,,, √x2+y2dxdydz
(V)
| x2 + y2 = 2y, x2 + y2 + z= 0,
z= −4 при x2 + y2 ≤ 2y
| 7
| ,,, √x2+y2dxdydz
(V)
| x2 + y2 + 2y= 0, z= x2 + y2, z= 0
при x2 + y2 ≤ −2y
| 8
| ,,, √x2+y2dxdydz
(V)
| x2 + y2 + 2y= 0, x2 + y2 + z= 0,
z= −4 при x2 + y2 ≤ −2y
| 9
| ,,, √x2+y2dxdydz
(V)
| x2 + y2 = 2x, 4 − z= x2 + y2, z= 4
при x2 + y2 ≤ 2x
| 10
| ,,, √x2 + y2dxdydz
(V)
| x2 + y2 = 2x, z− 4 = x2 + y2, z= 0
при x2 + y2 ≤ 2x
| 11
| ,,, √x2+y2dxdydz
(V)
| x2 + y2 = −2x, 4 − z= x2 + y2, z= 4 при x2 + y2 ≤ −2x
| 12
| ,,, √x2+y2dxdydz
(V)
| x2 + y2 = −2x, z− 4 = x2 + y2, z= 0 при x2 + y2 ≤ −2x
| 13
| ,,, √x2+y2dxdydz
(V)
| x2 + y2 = 2y, 4 − z= x2 + y2, z= 4
при x2 + y2 ≤ 2y
| 14
| ,,, √x2+y2dxdydz
(V)
| x2 + y2 = 2y, z− 4 = x2 + y2, z= 0
при x2 + y2 ≤ 2y
| 15
| ,,, √x2+y2dxdydz
(V)
| x2 + y2 + 2y= 0, 4 − z= x2 + y2,
z= 4 при x2 + y2 ≤ −2y
| 16
| ,,, √x2 + y2dxdydz
(V)
| x2 + y2 + 2y= 0, z− 4 = x2 + y2,
z= 0 при x2 + y2 ≤ −2y
| 17
| ,,, x2 + y2 dxdydz
(V)
| (x2 + y2)2 = 4(x2 − y2),
2z= x2 + y2, z= 0, если 0 ≤ x
|
18
| ,,, x2 + y2 dxdydz
(V)
| (x2 + y2)2 = 4(x2 − y2),
2z= x2 + y2, z= 0, если 0 ≤ x, y≤ 0
|
19
| ,,, x2 + y2 dxdydz
(V)
| (x2 + y2)2 = 4(x2 − y2),
2z= x2 + y2, z= 0, если x≤ 0, y≥ 0
|
20
| ,,, x2 + y2 dxdydz
(V)
| (x2 + y2)2 = 4(x2 − y2),
2z= x2 + y2, z= 0, если x≤ 0, y≤ 0
|
21
| ,,, x2 + y2 dxdydz
(V)
| (x2 + y2)2 = 4(y2 − x2),
2z= x2 + y2, z= 0, если 0 ≤ x, y≥ 0
|
22
| ,,, x2 + y2 dxdydz
(V)
| (x2 + y2)2 = 4(y2 − x2),
2z= x2 + y2, z= 0, если x≤ 0, y≥ 0
|
23
| ,,, x2 + y2 dxdydz
(V)
| (x2 + y2)2 = 4(y2 − x2),
2z= x2 + y2, z= 0, если x≤ 0, y≤ 0
|
24
| ,,, x2 + y2 dxdydz
(V)
| (x2 + y2)2 = 4(y2 − x2),
2z= x2 + y2, z= 0, если 0 ≤ x, y≤ 0
| 25
| ,,, x2 + y2 1 dxdydz
2
(V)
| x2 + y2 = 2x, x2 + y2 = 4x,
x2 + y2 = 4z, z= 0, если 0 ≤ z
| 26
| ,,, √x2 + y2dxdydz
(V)
| x2 + y2 2 = 4xy, x2 + y2 = 2z,
z= 0, если 0 ≤ x,0 ≤ y
|
|