Главная страница

Удк 159. 9 Ббк88 р 12 Федеральная программа книгоиздания России Рецензенты канд психол наук С. А. Исайчев, доктор биол наук И. И. Полетаева РавичЩербо ив и др Р


Скачать 3.61 Mb.
НазваниеУдк 159. 9 Ббк88 р 12 Федеральная программа книгоиздания России Рецензенты канд психол наук С. А. Исайчев, доктор биол наук И. И. Полетаева РавичЩербо ив и др Р
Дата26.01.2022
Размер3.61 Mb.
Формат файлаpdf
Имя файла1ravich_shcherbo_i_v_maryutina_t_m_grigorenko_e_l_psikhogenet.pdf
ТипПрограмма
#342889
страница24 из 42
1   ...   20   21   22   23   24   25   26   27   ...   42
4. ФИЗИОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДВИЖЕНИЙ Последнюю группу составляют признаки, относящиеся к физиологическим системам обеспечения движений характеристики дыхания и кровообращения, особенности функционирования мышечного аппарата, аэробная и анаэробная работоспособность и т.д. Далеко не все они исследованы сточки зрения генетической некоторые будут рассмотрены в главах, посвященных психофизиологическим признакам. Мы же сейчас коротко рассмотрим данные об одном интегральном показателе физических способностей, а именно о максимальном потреблении кислорода (МПК), поскольку они могут служить хорошей моделью для изучения других физиологических характеристик.
МПК говорит о работоспособности систем, обеспечивающих кислородом организм, в том числе и мышечную деятельность. Относительно МПК известно следующее его среднепопуляци- онная величина - около 40 ± 4-5 мл/мин/кг, оно не меняется существенно с возрастом (во всяком случаев пределах детства и юношества, мало поддается тренировке (очевидно, возможен прирост не более чем на 20-30%). Вместе стему спортсменов международного класса его величина достигает 70-80 мл/мин/кг; понятно, что эта величина оказывается некоторой особой индивидуальной чертой, а не результатом тренировки. Исследования, проведенные методом близнецов и суммированные В.Б. Шварцем, дали оценки наследуе- мости 0,66—0,93, и, кроме того, обнаружено сходство в парах родители Х дети [97]. Автор приходит к выводу, что, хотя тренировки могут поднять МПК, пределы роста, по-видимому, лимитированы индивидуальным генотипом там же с. 159]. Таким образом, МПК оказывается прогностичным признаком, своеобразным генетическим маркёром» для отбора, например, в определенные виды спорта. Генетически заданным оказался и другой механизм энергетического обеспечения мышечной активности — анаэробные процессы поданным разных авторов, коэффициент наследуемости соответствующих показателей колеблется в пределах 0,70-0,99. Возможно, что именно аэробные и анаэробные процессы, будучи генетически детерминированными, обусловливают и наследуемость тех двигательных функций, реализация которых зависит от их эффективности. В целом же данный уровень (физиологическое обеспечение движений) исследован, пожалуй, меньше всего.
* * * Движения человека, их индивидуальные особенности — весьма перспективный объект психогенетического исследования, позволяющий достаточно четко задавать и фиксировать психологические условия реализации движения, менять стимульную среду, задачу, биомеханику, исследовать разные уровни обеспечения движения и т.д. Однако пока таких работ очень мало и они скорее ставят вопросы, чем отвечают на них. Сточки зрения психологической, среди продуктивных гипотез выделяются, по-видимому, две первая — об изменении генотип-средовых соотношений в вариативности фенотипически одного итого же движения при изменении механизмов его реализации, те. включения его в различные функциональные системы и вторая — о динамике этих соотношений при переходе от индивидуального оптимума к предельным возможностям данной функции.
266
ГЕНЕТИЧЕСКАЯ ПСИХОФИЗИОЛОГИЯ Генетическая психофизиология — новая область исследований, сложившаяся на стыке психогенетики и дифференциальной психофизиологии. Принято считать, что генотипические особенности могут влиять на поведение человека и на его психику лишь постольку, поскольку они влияют на морфо- функциональные характеристики, являющиеся материальным субстратом психического. Вот почему одна из главных задач генетической психофизиологии — изучение взаимодействия наследственной программы развития и факторов окружающей среды в формировании структурно-функциональных комплексов центральной нервной системы (ЦНС) человека и других физиологических систем организма, которые участвуют в обеспечении психической деятельности. Теоретическим основанием для постановки исследований такого рода служит представление об индивидуальности человека как целостной многоуровневой биосоциальной системе, в которой действует принцип антиципации те. предвосхищения) развития. Исходя из этого принципа можно полагать, что первичный в структуре индивидуальности генетический уровень инициирует развитие сопряженных с ним морфологического и физиологического уровней, а те в свою очередь во взаимодействии со средой создают условия для возникновения психических новообразований. Таким образом, исследование генотипических и средовых детерминант психофизиологических характеристик становится звеном, связующим индивидуальный геном и индивидуальные особенности психики человека. Отсюда вытекает и стратегия исследований, а именно подход к изучению детерминации индивидуальных особенностей психики путем оценки роли генотипа в меж-
267
IV
индивидуальной изменчивости существенных в этом плане психофизиологических признаков. При такой постановке вопроса закономерными необходимым становится исследование роли факторов генотипа в формировании физиологических систем организма, ив первую очередь ЦНС. Глава ГЕНЕТИКА МОЗГА МЕТОДИЧЕСКИЕ ПОДХОДЫ И УРОВНИ АНАЛИЗА
1. РОВНИ АНАЛИЗА ГЕНЕТИЧЕСКОЙ ДЕТЕРМИНАЦИИ ЦНС При изучении строения и работы ЦНС как относительно самостоятельные выделяются следующие уровни анализа клеточный, мор- фофункциональный и системный. Каждый уровень имеет собственные объекты исследования и изучает присущие этим объектам закономерности функционирования. Соответственно вопрос о роли генотипа в формировании ЦНС также должен рассматриваться применительно к трем перечисленным уровням. Первый связан с генетической детерминацией функций клеточных элементов и нервной ткани, второй — морфологических и функциональных особенностей отдельных образований, из которых состоит головной мозг, третий — организации функциональных систем, лежащих в основе поведения и психики. НЕЙРОННЫЙ УРОВЕНЬ Строительные блоки нервной системы — нервные клетки (нейроны. Главной особенностью нейронов является способность наружной мембраны генерировать нервные импульсы и через особое образование синапс — передавать информацию от одного нейрона к другому. Импульс передается через синапс с помощью особых биохимических веществ-посредников (медиаторов. Синапсы и медиаторы могут быть как возбуждающие, таки тормозные. Предположительно мозг человека содержит 10 11
нейронов, причем по своей организации и функциональному назначению нервные клетки обнаруживают чрезвычайное разнообразие. Нейроны химически, морфологически и функционально специализированы. Как и любая живая клетка, каждый нейрон в ЦНС реализует генетически обусловленную программу жизнедеятельности, выполняя предназначенные ему задачи обработку приходящих возбуждений и генерацию собственного ответа. Для выполнения данных задач он нуждается в ресурсах, а для пополнения ресурсов (запасов нейроактив- ных веществ, расходующихся в процессах жизнедеятельности) необходим определенный уровень их синтеза. Принято считать, что все эти процессы находятся под контролем генотипа. По современным представлениям, функциональная специализация нейронов складывается на молекулярно-генетическом уровне. Она проявляется во-первых, в формировании особых молекулярных образований на поверхности нейрона (хеморецепторов), которые обладают избирательной чувствительностью к действующим на нейрон медиаторами другим биологически активным веществам во-вторых, в особенностях секреторного аппарата нейрона, который обеспечивает синтез медиаторов и соответствующих ферментов. Биохимическая специализация возникает в результате взаимодействия генетической программы нейрона и той информации, которая поступает из его внешнего окружения [7, 80, 119, 126]. Однако подобные представления в значительной степени априорны, потому что конкретные генетические механизмы, контролирующие жизнедятельность нейронов и нервной системы в целом, еще далеко не изучены. По некоторым данным, в мозге экспрессируется не менее 2500 генов, но так или иначе охарактеризованы около 5% от этого числа. Каждый нейрон, имея, как и любая другая клетка, ядерный аппарат, несет в себе полную генетическую информацию о морфофунк- циональных особенностях организма, нов нейронах, как ив других клетках организма, активируется лишь часть генетической информации. Однако число экспрессируемых в нейронах генов резко превышает число генов, экспрессируемых в клетках других тканей организма. Мощность работы генетической информации в нейронах доказывается методом ДНК-РНК-гибридизации и путем прямого анализа синтезируемых белков [139]. Метод ДНК-РНК-гибридизации позволяет оценить число участков ДНК, с которых в клетках данной ткани считывается генетическая информация. Для этой цели из клеток выделяется полный набор молекул информационной РНК, которые списаны с функционирующих участков ДНК, те. со всего набора экспрессированных генов. В смеси с полным набором ДНК изданных клеток выделенные молекулы информационной РНК вступают в комплементарные сочетания (гибридизируются) с гомологичными им участками ДНК. Определяя объем набора участков ДНК, вступающих в гибридизацию, можно судить об активности генома. Показано, что молекулы информационной РНК, выделенные из клеток соматических тканей (печень, почки, вступают в гибридизацию с относительно небольшим объемом ДНК (около 4—6%). Это свидетельствует о том, что сравнительно небольшая специализированная группа генов обеспечивает специфические особенности соматических тканей. В тоже время для тканей мозга аналогичное число намного выше. По разным данным, оно колеблется в довольно широких пределах, в среднем составляя около 30%, те. в несколько раз больше, чем в любом другом органе. Более того, в нервных тканях разных отделов мозга, по-видимому, экспрессируется различное число генов. Есть основания полагать, что наибольший объем экспресси- руемых генов характерен для филогенетически молодых отделов мозга, в первую очередь для областей коры, связанных с обеспечением специфически человеческих функций. Так, установлено, что в клетках ассоциативных зон коры больших полушарий экспрессируется приблизительно 35,6% уникальных последовательностей ДНК, а в клетках проекционных зон — 30,8% [26, 139]. Не исключено, что именно различия в объеме экспрессируемой генетической информации лежат в основе функциональной специализации разных отделов мозга. Одной из наиболее поразительных особенностей нервной системы является высокая точность связей нервных клеток друг с другом и с различными периферическими органами. Создается впечатление, что каждый нейрон знает предназначенное для него место. В процессе формирования нервной системы отростки нейронов растут по направлению к своему органу — мишени, игнорируя одни клетки, выбирая другие и образуя контакты (синапсы) не в любом участке нейрона, а, как правило, в его определенной области. Особенно загадочной выглядит картина того, как аксонам (главным отросткам нейрона, через которые распространяются возникшие в нейроне импульсы) приходится протягиваться на значительные расстояния, изменять направление своего роста, образовывать ответвления прежде, чем они достигнут клетки-«мишени». В основе столь высокой точности образования связей лежит принцип химического сродства, в соответствии с которым большинство нейронов или их малых популяций приобретают химические различия на ранних этапах развития в зависимости от занимаемого положения. Эта дифференцированность выражается в наличии своеобразных химических меток, которые и позволяют аксонам узнавать либо аналогичную, либо комплементарную метку на поверхности клетки-«ми- шени». Предполагается также, что в этом процессе важную роль играют топографические взаимоотношения нейронов и временная последовательность созревания клеток и их связей [83]. Согласно современным представлениям, значительную роль в процессах развития нервной ткани играет временной режим экспрессии генов, тесно связанный в своих механизмах с процессами межткане- вых и межклеточных взаимодействий. Считается, что именно точные сроки экспрессии специфических генов детерминируют формирование специфического соотношения определенных медиаторных или гормональных продуктов в конкретные периоды развития. Жесткая временная последовательность экспрессии генов лежит ив основе формирования морфологических особенностей мозга — структур и связей между ними. Методом ДНК-РНК-гибридизации было показано, что в онтогенезе по мере формирования нейрона возрастает объем активированной генетической информации. Данные, полученные путем гибридизации общей ДНК с молекулами информационной РНК, показали, что по мере роста усиливается активность, сложность генных эффектов в нейронах. У эмбриона человека в возрасте 22 недель в нейронах активны около 8% генов, а в нейронах взрослых — 25% и более [139]. Еще одной важной особенностью ранних этапов развития ЦНС является генетически обусловленная избыточность в образовании количества нейронов, их отростков и межнейронных контактов. Говоря другими словами, нейронов входе эмбриогенеза мозга возникает значительно больше, чем это характерно для взрослого индивида. Более того, формирующиеся нейроны образуют заведомо большее, чем требуется, количество отростков и синапсов. По мере созревания ЦНС эта избыточность постепенно устраняется нейроны, оказавшиеся ненужными, их отростки и межклеточные контакты элиминируются. Гибель (выборочная элиминация) лишних нейронов, так называемый апоптоз, служит устранению избыточных отростков и синапсов и выступает как один из способов уточнения плана формирования нервной системы. Кроме того, гибель нейронов ограничивает и тем самым контролирует рост числа клеток. Она необходима для установления соответствия количества клеток в популяциях нейронов, связанных друг с другом. Апоптоз — активный процесс, реализация которого требует активации специфических генов. Избыточность и элиминация нейронов выступают как два сопряженных фактора, взаимодействие которых способствует более точной координации и интеграции растущей нервной системы. У человека интенсивный и избыточный синаптогенез (образование контактов между нейронами) происходит в течение первых двух лет жизни. Количество синапсов в раннем онтогенезе значительно больше, чему взрослых. Постепенно уменьшаясь, их число доходит до типичного для взрослых уровня приблизительно к 7-10 годам. Сохраняются же (это существенно) именно те контакты, которые оказываются непосредственно включенными в обработку внешних воздействий, те. под влиянием опыта происходит процесс избирательной, или селективной, стабилизации синапсов. В силу того, что избыточная синаптическая плотность рассматривается как морфологическая основа усвоения опыта, эти данные свидетельствуют о высокой потенциальной способности к усвоению опыта детей раннего возраста. Кроме того, можно полагать, что воспринимаемый благодаря этому на данном возрастном этапе опыт, образно говоря, встраивается в морфологию мозговых связей, в известной мере определяя их богатство, широту и разнообразие. С другой стороны, гипотеза генетического программирования предполагает, что специфическое химическое сродство между окончаниями аксонов и постсинаптической клеткой генетически запрограммировано и однозначно приводит к формированию стабильных межклеточных контактов и связей. Однако число синапсов ЦНС человека оценивается цифрой 10 14
, в то время как геном содержит лишь 10 6
генов. Таким образом, маловероятно, что специфичность каждого отдельного синапса программируется отдельным геном или его определенным участком. Более рациональным выглядит предположение, что одним или несколькими генами кодируется медиаторная специфичность нейронов, а их рост до органа-«мишени» контролируется одним общим регуляторным механизмом. Такой эпигенетический механизм мог бы производить тонкую настройку связей нейронной сети. Однако реальные механизмы этого процесса пока неизвестны. В заключение можно сказать, что исследования функций генетического аппарата нейрона и нервной системы в целом находятся в начальной стадии. Тем не менее сначала х годов XX введется систематическая работа по составлению всеобъемлющего каталога генов, активных в мозге человека. Очевидно, на этом пути еще предстоят значительные открытия, которые, предположительно, будут связаны с решением следующих вопросов
- Какая часть генов из числа всех генов, экспрессирующихся в мозге, является
«мозгоспецифической», те. активирующейся только в мозге
- Имеют ли «мозгоспецифические» гены общие черты, отличающие их от генов, которые активны в других тканях
- Существуют ли особенности в составе мРНК нервных клеток разных типов
- Как осуществляется регуляция экспрессии «мозгоспецифичес- ких» генов
- Каковы структура и функции белков, кодируемых «мозгоспе- цифическими» генами
МОРФОФУНКЦИОНАЛЬНЫЙ УРОВЕНЬ Мозг современного человека высоко дифференцирован. Он состоит из множества относительно мелких и крупных структурных образований, объединенных вряд морфофункциональных блоков. В соответствии сданными многих экспериментальных и клинических исследований каждому из блоков приписываются разные функции. Так, в стволе и подкорковых структурах мозга локализованы центры, регулирующие витальные функции организма. Кроме того, к их функциям относятся обеспечение тонизирующих и модулирующих влияний на разные уровни ЦНС, формирование биологических потребностей и мотиваций, побуждающих организм к действию (голод, жажда и др, а также эмоций, сигнализирующих об успехе или неудаче в удовлетворении этих потребностей. Кора больших полушарий играет определяющую роль в обеспечении высших психических функций человека. В самом общем виде она (1) осуществляет прием и окончательную переработку информации, а также (2) организует на этой основе сложные формы поведения, причем первая функция связана преимущественно с деятельностью задних отделов коры, авто- рая—с деятельностью передних. Разные функции выполняют левое и правое полушария. Например, у «правшей» центры, управляющие ведущей правой рукой и речью, локализованы в левом полушарии. Обобщенной морфологической характеристикой мозга служит его вес. Индивидуальные различия абсолютного веса мозга взрослых людей очень велики. При средних значениях 1400—1500 г диапазон крайних индивидуальных значений (из изученных) колеблется в пределах от 2012 г (у И.С. Тургенева) догу А. Франса). Коэффициент вариативности, по обобщенным данным, составляет приблизительно
8%. У мужчин вес мозга в среднем наг больше, чему женщин. Вес мозга почти не зависит от размеров тела, но положительно коррелирует с размерами черепа. Различия повесу мозга, по-видимому, в определенной степени обусловлены генетическими факторами. Об этом свидетельствуют специально выведенные линии мышей — с высокими низким весом мозга. У первых масса мозга приблизительно в 1,5 больше, чему вторых. Попытки установить связь между весом мозга и успешностью обучения мышей однозначных результатов не дали. Вариабельность борозди извилин на поверхности мозга чрезвычайно велика. Как подчеркивают морфологи, не обнаружено двух одинаковых экземпляров мозга с полностью совпадающим рисунком поверхности. Например, СМ. Блинков пишет Рисунок борозди извилин на поверхности коры больших полушарий мозга у людей столь же различен, каких лица, и также отличается некоторым семейным сходством, с. 24]. Одни борозды и извилины, в основном наиболее крупные, встречаются в каждом мозге, другие не столь постоянны. Вариабельность борозди извилин проявляется в их длине, глубине, прерывистости и многих других более частных особенностях [17]. Индивидуальная специфичность характерна и для подкорковых образований, глубоких структур мозга, а также проводящих путей, соединяющих разные отделы мозга [139]. В тоже время многообразие индивидуальных различий в строении коры и других образований мозга всегда находится в пределах общего плана строения, присущего человеку. Индивидуальные различия в строении мозга дают основания для попыток связать их с индивидуально-психологическими различиями. Большое внимание уделялось поиску морфологических и цитоархи- тектонических (клеточных) оснований индивидуальных особенностей умственного развития, в первую очередь одаренности. Было установлено, что вес мозга не связан с умственным развитием человека. Наряду с этим при анализе особенностей клеточного строения коры больших полушарий обнаружили, что индивидуальным особенностям психической деятельности соответствуют определенные соотношения в развитии проекционных и ассоциативных областей. Так, постмортальные исследования мозга людей, которые обладали выдающимися способностями, демонстрируют связь между спецификой их одаренности и морфологическими особенностями мозга, в первую очередь — с размерами нейронов в так называемом рецеп- тивном слое коры. Например, анализ мозга выдающегося физика А. Эйнштейна показал, что именно в тех областях, где следовало ожидать максимальных изменений (передние ассоциативные зоны левого полушария, предположительно отвечающие за абстрактно-логичес- кое мышление, рецептивный слой коры был в два раза толще обычного. Кроме того, там же было обнаружено значительно превосходящее статистическую норму число так называемых глиальных клеток, которые обслуживали метаболические нужды нейронов. Характерно, что в других отделах мозга Эйнштейна особых отличий не выявлено [418]. Предполагается, что столь неравномерное развитие мозга связано с перераспределением его ресурсов (медиаторов, нейропептидов и т.д.) в пользу наиболее интенсивно работающих отделов. Особую роль здесь играет перераспределение ресурсов медиатора ацетилхолина. Холинэр- гическая система мозга, в которой ацетилхолин служит посредником проведения нервных импульсов, по некоторым представлениям, обеспечивает информационную составляющую процессов обучения [82]. Эти данные свидетельствуют о том, что индивидуальные различия в умственной деятельности человека, по-видимому, связаны с особенностями обмена веществ в мозге. Структурная индивидуализированность мозга, неповторимость топографических особенностей у каждого человека складывается в онтогенезе постепенно [171, 172]. Вопрос о том, как влияют генетические особенности на формирование индивидуализированности мозга, пока остается открытым. По-видимому, в формировании этих морфологических характеристик играют роль генетические факторы. Например, отмечается семейное сходство в рисунке борозд коры мозга. Кроме того, при сравнении мозга МЗ близнецов обнаружено довольно значительное сходство морфологических особенностей, причем в левом полушарии больше, чем в правом [427]. Наряду с этим существуют традиционные и разработанные методы неинвазивного изучения функциональной активности мозга. Речь идет о методах регистрации биоэлектрической активности мозга, в первую очередь коры больших полушарий. Методы регистрации энцефалограммы и вызванных потенциалов позволяют зарегистрировать активность отдельных зон коры больших полушарий, оценить индивидуальную специфичность этой активности как качественно, таки количественно и применить к полученным результатам генетико-ста- тистический анализ. По совокупности таких данных можно судить о роли генетических факторов в происхождении индивидуальных особенностей функциональной активности отдельных областей коры как в состоянии покоя, таки в процессе деятельности. Итоги конкретных исследований изложены в гл. XIII и XIV. СИСТЕМНЫЙ УРОВЕНЬ В широком понимании живая система представляет собой совокупность взаимосвязанных элементов, которые обладают способностью к совместному функционированию и приобретению свойств, не присущих отдельным входящим в ее состав элементам. В настоящее время принято считать, что мозг представляет собой «сверхсистему», состоящую из множества систем и сетей взаимосвязанных нервных клеток и структурных образований более высокого уровня. Морфологически в строении мозга выделяются два типа систем микро- и макросистемы. Первые представляет собой совокупность популяций нервных клеток, осуществляющих относительно элементарные функции. Примером микросистем могут служить нейронный модуль (вертикально организованная колонка нейронов и их отростков в коре больших полушарий) или гнезда взаимосвязанных нейронов и глиальных клеток в подкорковых структурах. Предполагается, что таким микроансамблям свойственна преимущественно жесткая генетически детерминированная форма конструкции и активности [176]. Сходные по своим функциям микроансамбли, или микросистемы, объединяются в макросистемы, сопоставимые с отдельными структурными образованиями мозга. Например, отдельные зоны коры больших полушарий, имеющие разное клеточное строение (цитоар- хитектонику), представляют собой разные макросистемы. Сюда же относятся системы подкорковых и стволовых образований, корково-под- корковые системы мозга [139]. Современная наука располагает методами, позволяющими экспериментально изучать некоторые аспекты функционирования мозговых систем. Речь идет об уже упоминавшихся ранее электрофизиологических методах электроэнцефалограмме и вызванных потенциалах. Исходно энцефалограмма характеризует специфику функциональной активности той зоны мозга, где она регистрируется. Однако наряду с этим разработаны способы оценки взаимосвязанности локальных показателей биоэлектрической активности мозга при регистрации ее в разных отделах. В основе данного подхода лежит простая логика если мозг работает как целое (система, то изменения в активности отдельных элементов системы должны иметь взаимосвязанный характер. Подробнее речь о них пойдет в гл. XIII, здесь же подчеркнем, что электрофизиологические показатели взаимодействия разных зон коры
18*
275
в покое и при реализации той или иной деятельности демонстрируют значительную межиндивидуальную вариативность. Последнее дает основание ставить вопрос о роли факторов генотипа и среды в происхождении этой вариативности. Другими словами, используя генети- ко-статистический анализ, можно выявить причины межиндивиду- альной вариативности не только локальных электрофизиологических показателей, но и производных от них показателей, отражающих степень взаимосвязанности последних, те. работу мозговых систем.
1   ...   20   21   22   23   24   25   26   27   ...   42


написать администратору сайта