Главная страница

ПОУРОЧКА_6_КЛ_ФГОС. Урок 2 Наибольший общий делитель. Взаимно простые числа


Скачать 2.22 Mb.
НазваниеУрок 2 Наибольший общий делитель. Взаимно простые числа
Дата03.06.2022
Размер2.22 Mb.
Формат файлаdoc
Имя файлаПОУРОЧКА_6_КЛ_ФГОС.doc
ТипУрок
#566970
страница22 из 33
1   ...   18   19   20   21   22   23   24   25   ...   33

Личностные: формировать устойчивую мотивацию к обучению на основе алго­ритма выпол­нения заданий
Основные понятия: сложение отрицательных чисел
Ход урока

Орг. момент

Определение темы и цели урока

I. Актуализация опорных знаний учащихся.

1. Решить устно № 1049 (в; г) и 1051 (а – д).

2. Сформулировать правило сложения отрицательных чисел. Привести свои примеры.

3. Решить задачи (устно):

а) Ветки смородины выносили температуру –195°, а после закаливания могли выдержать температуру ниже этой на 58°. Какую температуру выдерживали ветки смородины после закаливания?

б) Мучные жуки выдерживают температуру –19°, а жуки-древоточцы выдерживают температуру ниже этой на 1,4°. Какую температуру выдерживают жуки-древоточцы?

4. С помощью демонстрационного термометра выполните сложение:

а) +5° + (+4°); г) о° + (–7°);

б) –5° + (–4°); д) –3,5° + (–4,5°);

в) 0° + (+7°); е) –1,5° + (–9,5°).

II. Выполнение упражнений.

1. Решить № 1044 (устно).

2. Решить № 1045 (д; е; з; к) с комментированием на месте.

3. Решить № 1047 (в) на доске и в тетрадях; № 1047 (а) самостоятельно.

Решение.

а) х + у + (–16) = –17 + (–29) + (–16) = –62;

в) х + у + (–16) =

.

4. Решить № 1048 на доске и в тетрадях.

а) (–0,251 + (–0,37)) + (–0,2 + (–0,152)) = –0,621 + (–0,352) = – 0,973.

б)



III. Самостоятельная работа.

Вариант I.

1. Найдите значение суммы:

а) –0,48 + (-0,76); б) ; в) ;

г) ; д) .

2. К сумме чисел: а) –24 и –56 прибавьте –39;

б) и прибавьте –3,5.

3. Разность забитых и пропущенных шайб в первой игре команды равна –5, во второй игре она равна –2, а в третьей игре равна 0 (нулю). Какова разность забитых и пропущенных шайб у этой команды за эти три игры вместе?

Вариант II.

1. Найдите значение суммы:

а) –0,37 + (–0,84); б) ; в) ;

г) ; д) .

2. К сумме чисел: а) –37 и 25 прибавьте –49;

б) и прибавьте –1,4.

3. Разность забитых и пропущенных шайб в первом тайме игры команды равна –1, во втором тайме она равна –4, а в третьем тай-ме – 2. Какова разность забитых и пропущенных шайб у команды за всю игру?
1. Сформулируйте правило сложения отрицательных чисел. Приведите свои примеры.

2. Может ли при сложении отрицательных чисел получиться нуль? отрицательное число?

Домашнее задание: выучить правило п. 32, решить № 1056 (ж-м), № 1055 (2), № 1060 (в).

Урок 1 сложение чисел с разными знаками.

Цели: ввести правило сложения чисел с разными знаками; упражнять учащихся в сложении чисел с разными знаками и сложении отрицательных чисел, воспитание сознательного усвоения дисциплины, воспитание математической речевой культуры привитие навыков нравственного воспитания, воспитание трудолюбия, чувства коллективизма, привитие интереса к изучаемому предмету, развитие инициативы, познавательного интереса, обучение методам исследовательского поиска, развитие мыслительной деятельности, развитие практической направленности изучаемого материала.
Планируемые результаты
Предметные: Вывести алгоритм сложения чисел с разными знака­ми и научиться применять его
Метапридметные: Коммуникативные: развивать умение точно и грамотно выражать свои мысли, отстаивать свою точку зрения в процессе дискуссии. Регулятивные: определять последователь­ность промежуточных действий с учетом ко­нечного результата, составлять план. Познавательные: уметь осуществлять анализ объектов с выделением существенных и несу­щественных признаков
Личностные: формировать устойчивую мотивацию к обучению на основе алго­ритма выпол­нения заданий

Основные понятия:
Ход урока

Орг. момент

Определение темы и цели урока

I. Анализ самостоятельной работы.

Сообщить результаты самостоятельной работы и указать ошибки, сделанные учащимися в ходе работы.

II. Устная работа.

1. Решить устно № 1072 (а – г) и 1074.

2. Повторить определение модуля числа и решить устно задачу № 1060.

3. Сформулировать правило сложения отрицательных чисел. Решить устно задачу:

Вечером температура воздуха была –10,5°, а за ночь температура воздуха понизилась на 2,5°. Какая температура воздуха была утром?

4. Подберите такое число, чтобы получилось верное равенство:

а) –6 + … = –8; г) … + (–3,8) = –4;

б) –6,5 + … = –10,5; д) … + (–9,1) = –10,1;

в) … + (–3,9) = –13,9; е) –0,2 + … = –0,4.

III. Изучение нового материала.

1. Используя демонстрационный термометр, сложить числа:

9 + (–6) = +3; –6 + 2 = –4; –8 + 10 = 2;

7 + (–7) = 0; 9 + (–12) = –3.

2. Разобрать сложение чисел с разными знаками по координатной прямой (рис. 84 и 86 учебника).

3. Сформулировать правило сложения чисел с разными знаками. Обратить внимание учащихся, что обычно сначала определяют и записывают знак суммы, а потом находят разность модулей.

4. Выполнить сложение (устно):

а) –7 + 11; б) 7 + (–11); в) –10 + (–4);

г) –10 + 4; д) 10 + (–4); е) –3 + 8; ж) 3 + (–8).

IV. Закрепление изученного материала.

1. Решить № 1061–1064, используя координатную прямую, заранее начерченную на доске.

2. Решить № 1066 (а; в; д) на доске и в тетрадях, № 1066 (б; г; е; ж) самостоятельно.

Решение.

а) 26 + (–6) = 20; г) 80 + (–120) = –40;

б) –70 + 50 = –20; д) –6,3 + 7,8 = 1,5;

в) –17 + 30 = 13; е) –9 + 10,2 = 1,2;

ж) 1 + (–0,39) = 0,61.

3. Решить № 1065 самостоятельно.

4. Решить № 1069 (а; б).

5. Повторение ранее изученного материала:

а) Решить задачу № 1079 (1) на доске и в тетрадях.

Решение.

1) 140 · 3 = 420 (км) – проехали в третий день.

2) 240 + 140 + 420 = 800 (км) – проехали за три дня.

3) 230 · 5 = 1150 (км) – проехали за пять дней.

4) 1150 – 800 = 350 (км) – проехали в пятый день.

Ответ: 350 км.

б) Решить № 1073 (б).

Решение.



.

Ответ: –9.

V. Итог урока.

1. Ответить на вопросы на с. 181 учебника.

2. Выполнить сложение:

а) 37 + (–56); в) 4,61 + (–2,29);

б) –43 + 75; г) –3,08 + 1,69.

Домашнее задание: выучить правила п. 33, решить № 1081 (а – г), № 1083 (а), № 1085.

Урок 2сложение чисел с разными знаками

Цели: способствовать выработке навыков сложения отрицательных чисел и сложения чисел с разными знаками; развивать логическое мышление учащихс, воспитание сознательного усвоения дисциплины, воспитание математической речевой культуры привитие навыков нравственного воспитания, воспитание трудолюбия, чувства коллективизма, привитие интереса к изучаемому предмету, развитие инициативы, познавательного интереса, обучение методам исследовательского поиска, развитие мыслительной деятельности, развитие практической направленности изучаемого материала.
Планируемые результаты
Предметные: Вывести алгоритм сложения чисел с разными знака­ми и научиться применять его
Метапридметные: Коммуникативные: развивать умение точно и грамотно выражать свои мысли, отстаивать свою точку зрения в процессе дискуссии. Регулятивные: определять последователь­ность промежуточных действий с учетом ко­нечного результата, составлять план. Познавательные: уметь осуществлять анализ объектов с выделением существенных и несу­щественных признаков
Личностные: формировать устойчивую мотивацию к обучению на основе алго­ритма выпол­нения заданий

Основные понятия: сложение чисел с разными знаками
Ход урока

Орг. момент

Определение темы и цели урока

I. Проверка усвоения материала.

1. Сформулировать правило сложения отрицательных чисел.

Решить устно № 1072 (д – ж).

2. Решить устно № 1075 (а) и № 1076 (в; г).

3. Сформулировать правило сложения чисел с разными знаками.

4. Подберите такое число, чтобы получилось верное равенство:

а) –4,5 + … = –3,5; г) –7,2 + … = 4,2;

б) … + 3 = –2,9; д) … + (–4,9) = –2,9;

в) –13,1 + … = –13,1; е) 0,48 + … = 0.

II. Выполнение упражнений.

1. Решить № 1066 (з – м) (объясняет учитель).

решение.

к) ;

л) ; м) .

2. Выполнить сложение (самостоятельно):

а) ; б) ; в) ; г) .

3. Решить № 1069 (в; г).

4. Решить № 1067 (а) на доске и в тетрадях, 1067 (б) самостоятельно.

Решение.

а) (–6 + (–12)) + 20 = –18 + 20 = 2;

б) 2,6 + (–1,8 + 5,2) = 2,6 + 3,4 = 6.

5. Решить № 1070 (а; б) на доске и в тетрадях.

Решение.

а)

= –1,35;

б)

.

6. Повторение ранее изученного материала:

а) Решить задачу № 1079 (2) самостоятельно.

б) Решить № 1080 (1).

Решение.

1) 2,35 + 4,65 = 7; 2) 40 – 2,9 = 37,1; 3) 7 · 5,3 = 37,1;

4) 37,1 : 37,1 = 1.

в) Решить задачу № 1078 (а – г).

III. Итог урока.

1. Сформулировать правило сложения отрицательных чисел. Привести свои примеры.

2. Сформулировать правило сложения чисел с разными знаками. Привести свои примеры.

3. Выполните сложение:

а) –379 + 948; в) ;

б) –0,81 + 0,66; г) .

Домашнее задание: выучить правила п. 32 и 33; решить № 1081 (д – л), № 1083 (б; в), № 1084.

Урок 3 сложение чисел с разными знаками

Цели: способствовать выработке навыков и умений сложения отрицательных чисел и чисел с разными знаками; проверить усвоение материала учащимися в ходе выполнения упражнений, воспитание сознательного усвоения дисциплины, воспитание математической речевой культуры привитие навыков нравственного воспитания, воспитание трудолюбия, чувства коллективизма, привитие интереса к изучаемому предмету, развитие инициативы, познавательного интереса, обучение методам исследовательского поиска, развитие мыслительной деятельности, развитие практической направленности изучаемого материала.
Планируемые результаты
Предметные: Вывести алгоритм сложения чисел с разными знака­ми и научиться применять его
Метапридметные: Коммуникативные: развивать умение точно и грамотно выражать свои мысли, отстаивать свою точку зрения в процессе дискуссии. Регулятивные: определять последователь­ность промежуточных действий с учетом ко­нечного результата, составлять план. Познавательные: уметь осуществлять анализ объектов с выделением существенных и несу­щественных признаков
Личностные: формировать устойчивую мотивацию к обучению на основе алго­ритма выпол­нения заданий

Основные понятия: сложение чисел с разными знаками
Ход урока

Орг. момент

Определение темы и цели урока

I. Устная работа.

1. Повторить правило сложения отрицательных чисел. Привести свои примеры.

2. Повторить правило сложения чисел с разными знаками. Привести свои примеры.

3. Решить устно № 1072 (з; и) и 1073 (а).

4. Решить № 1075 (б; в), записывая решение только на доске.

II. Тренировочные упражнения.

1. Решить № 1066 (н – р) на доске и в тетрадях с помощью учителя.

Решение.

н) ;

о) ;

п) ;

р) = 0.

2. Решить № 1067 (в; г) на доске и в тетрадях.

Решение.

в) (–10 + (–1,3)) + (5 + 8,7) = –11,3 + 13,7 = 13,7 – 11,3 = 2,4;

г) (11 + (–6,5)) + (–3,2 + (–6)) = 4,5 + (–9,2) = – (9,2 – 4,5) = –4,7.

3. Решить № 1070 (в; г).

Решение.

в)

;

г) .

4. Решить № 1068.

5. Повторение ранее изученного материала:

Решить задачу № 1078 (д – з) на доске и в тетрадях.

III. Самостоятельная работа.

Вариант I.

1. Выполните сложение:

а) –543 + 458; г) ;

б) 0,54 + (–0,83); д) .

в) ;

2. Выполните действия .

3. Найдите значение выражения х + 2,6, если х = –1,47;

; х = –18; .

4. Сколько решений имеет уравнение |х + 2| = –5?

Вариант II.

1. Выполните сложение:

а) 257 + (–314); б) –0,28 + (–0,18); в) –6 + ;

г) ; д) .

2. Выполните действия .

3. Найдите значение выражения у + (–4,2), если у = 1,83;

у = ; у = 16; у = .

4. Сколько решений имеет уравнение |у – 9| = –6?
1   ...   18   19   20   21   22   23   24   25   ...   33


написать администратору сайта