ПОУРОЧКА_6_КЛ_ФГОС. Урок 2 Наибольший общий делитель. Взаимно простые числа
Скачать 2.22 Mb.
|
Итог урока Домашнее задание: повторить определение модуля числа и правила п. 28; решить № 968 (д–з), № 972, 973; индивидуальное задание – упражнение 962. Урок 1 Сравнение чисел Цели: повторить сравнение положительных чисел и рассмотреть сравнение отрицательных чисел, используя термометр и координатную прямую; развивать логическое мышление, воспитание математической речевой культуры, гигиеническое воспитание и формирование здорового образа жизни в целях сохранения психического, физического и нравственного здоровья человека, развитие интеграционных связей с другими дисциплинами, проведение анализа межпредметных связей, опора на морально-нравственные ценностные ориентиры, увеличение развивающих способностей, развитие нестандартного мышления, использование личностного и субъектного опыта. Планируемые результаты Предметные: Освоить правила сравнения чисел с различными комбинациями знаков и применять умения при решении задач Метапридметные: Коммуникативные: определять цели и функции участников, способы взаимодействия; планировать общие способы работы; обмениваться знаниями между одноклассниками для принятия эффективных совместных решений. Регулятивные: определять последовательность промежуточных действий с учетом конечного результата, составлять план. Познавательные: ориентироваться на разнообразие способов решения задач Личностные: формировать устойчивую мотивацию к обучению на основе алгоритма выполнения заданий Основные понятия: сравнение чисел Ход урока Орг. момент Определение темы и цели урока I. Анализ самостоятельной работы. 1. Сообщить результаты самостоятельной работы и ошибки, допущенные учащимися при выполнении работы. 2. Решить задания, вызвавшие затруднения у учащихся. 3. Решить устно № 984 и № 982. II. Изучение нового материала. 1. Используя демонстрационный термометр, сравнить температуру воздуха: а) 18° и 21°; б) 9° и 0°; в) 20° и 14,5°. г) 2° и –15°; д) –10° и 5 °; е) 0° и –8°; ж) –18° и –6°; з) –1,5° и 0°. Результаты записать в виде неравенств. 2. Записать в тетрадях выводы: 1) Любое положительное число больше нуля и больше любого отрицательного числа. Например, 1 > 0; 12 > –2,5. 2) Любое отрицательное число больше нуля и больше любого отрицательного числа. Например, –56 < 0; –9 < 0,0024. 3) Из двух отрицательных чисел больше то, модуль которого меньше. Например, –4 < –1; так как |–4| > |–1|; –75 < –9, так как |–75| > |–9|; –45 > –126, так как |–45| < |–126|. Эти правила позволяют сравнивать рациональные числа, не обращаясь к координатной прямой. 3. Если надо отметить, что число а положительное, то записывают: а > 0. Если надо отметить, что число а отрицательное, то записывают: а < 0. 4. Сравнить числа, используя координатную прямую (рис. 65 учебника). Сделать вывод: из двух отрицательных чисел больше то, которое на прямой расположено ближе к 0. III. Закрепление изученного материала. 1. Решить устно № 975. 2. Решить № 974 (а – е) на доске и в тетрадях. 3. Решить № 976 (а; б; г; ж) на месте с комментированием. 4. Решить № 981 (объясняет учитель). Решение. а) –4,3 < 0 (отрицательное число); б) 27,1 > 0 (положительное число); в) а < 0; г) в > 0. 5. Решить № 979, используя координатную прямую. Решение. а) –3 < –2,73 < –2; б) –10 < – 9,5 < –9; в) –1 < –0,63 < 0; г) 0 < 0,87 < 1; д) –2 < –1 < –1; е) –7 < –6 < –6. 6. Повторение изученного материала: 1) Решить № 990 самостоятельно. 2) Вычислите: а) ; б) Решение. 3) Решить № 992 (1; 2) самостоятельно. Двое учащихся решают на доске, а затем проверяется решение. Решение. IV. Итог урока. Ответить на вопросы на странице 163 учебника. домашнее задание: изучить п. 29; решить № 995 (а; б; в), 998, 999. Урок 2 сравнение чисел Цели: упражнять учащихся в сравнении чисел, закрепить полученные знания и умения в ходе выполнения упражнений; развивать логическое мышление учащихся, воспитание математической речевой культуры, гигиеническое воспитание и формирование здорового образа жизни в целях сохранения психического, физического и нравственного здоровья человека, развитие интеграционных связей с другими дисциплинами, проведение анализа межпредметных связей, опора на морально-нравственные ценностные ориентиры, увеличение развивающих способностей, развитие нестандартного мышления, использование личностного и субъектного опыта. Планируемые результаты Предметные: Освоить правила сравнения чисел с различными комбинациями знаков и применять умения при решении задач Метапридметные: Коммуникативные: определять цели и функции участников, способы взаимодействия; планировать общие способы работы; обмениваться знаниями между одноклассниками для принятия эффективных совместных решений. Регулятивные: определять последовательность промежуточных действий с учетом конечного результата, составлять план. Познавательные: ориентироваться на разнообразие способов решения задач Личностные: формировать устойчивую мотивацию к обучению на основе алгоритма выполнения заданий Основные понятия: сравнение чисел Ход урока Орг. момент Определение темы и цели урока I. Устная работа. 1. Решить устно № 983 (а) и № 987. 2. По тетрадям проверить выполнение учащимися домашней работы. 3. Расположите в порядке убывания следующие числа: –12; 17; –10; –23; 13; 0; –3,5; 7,2; 1,6. 4. Назвать три числа, меньше: а) –23; б) –0,4; в) 11,3. 5. Назовите три решения неравенства: а) х < 0; б) у > 5; в) а < –4. II. Выполнение упражнений. 1. решить № 974 (ж – м) на доске и в тетрадях. 2. Решить № 976 (в; з; д; е) самостоятельно с проверкой. 3. Решить № 980 (а; б; д; е) на доске и в тетрадях, № 980 (в; ж) самостоятельно. 4. Между какими соседними целыми числами заключено число: а) –4,5; б) 3,8; в) г) д) –7 е) 1,012? Ответ запишите в виде двойного неравенства. 5. Решить самостоятельно: Расположите числа в порядке возрастания: а) –2 б) 6. Сравните (на доске и в тетрадях): а) |3| + |7| и |3 + 7|. Ответ: равны. б) |–1| + |10| и |(–1) + 10|. Ответ: 11 > 9. в) |–6| + |5| и |(–6) + 5|. Ответ: 11 > 1. г) |–5| + |–8| и |(–5) + (–8) |. Ответ: равны. 7. Повторение материала: 1) Решить устно № 988. 2) Решить самостоятельно № 989. Решение. а) |х| – |у| = |–64,1| – |–7,6| = 64,1 –7,6 = 56,5; б) |х| + |у| = |–54,5| + |52,8| = 54,5 + 52,8 = 107,3. 3) Решить задачу № 993 (1) на доске и в тетрадях. Решение. 1) 2,5 + 2 + 0,5 = 5 (кг) взяли фруктов для компота; 2) 2,5 : 5 · 100% = 0,5 · 100% = 50% составляют яблоки; 3) 2 : 5 · 100% = 0,4 · 100% = 40% составляют груши; 4) 0,5 : 5 · 100% = 0,1 · 100% = 10% взяли вишен. Ответ: 50%; 40; и 10%. 4) Решить задачу № 993(2) самостоятельно. III. Итог урока. 1. Повторить правила сравнения чисел. 2. Какое из чисел меньше: а) –3 или –0,3; б) –8 или –7; в) –2 или –3 г) –0,17 или 0,173; д) – е) –0,1 или 0,001? 3. Решить уравнение (устно): а) |х| = 1; б) |у| = 7,3; в) |х| = 0; г) |у| = Домашнее задание: выучить правила п. 29, решить № 995 (г; д; е), 996, 997 (а). Урок 1 Изменение величин Цели: рассмотреть примеры, связанные с изменением величин; закрепить знания учащихся по сравнению чисел; развивать логическое мышление учащихся, воспитание сознательного усвоения дисциплины, воспитание математической речевой культуры привитие навыков нравственного воспитания, воспитание трудолюбия, чувства коллективизма, привитие интереса к изучаемому предмету, развитие инициативы, познавательного интереса, обучение методам исследовательского поиска, развитие мыслительной деятельности, развитие практической направленности изучаемого материала. Планируемые результаты Предметные: Научиться объяснять смысл положительного и отрицательного изменения величин применительно к жизненным ситуациям. Показывать на координатной прямой перемещение точки Метапридметные: Коммуникативные: воспринимать текст с учетом поставленной учебной задачи, находить в тексте информацию, необходимую для решения. Регулятивные: формировать целевые установки учебной деятельности, выстраивать алгоритм действий. Познавательные: уметь строить рассуждения в форме связи простых суждений об объекте, его строении, свойствах и связях Личностные: формировать устойчивую мотивацию к обучению на основе алгоритма выполнения заданий Основные понятия: Изменение величин Ход урока Орг. момент Определение темы и цели урока I. Актуализация опорных знаний учащихся. 1. Решить устно № 1008 по рисунку 70 учебника. 2. Решить устно № 1010 (а–г) и № 1011 (а; б; в). 3. Какие целые числа можно подставить вместо буквы а, чтобы неравенство стало верным: а) –1 < а < 3; б) –7 < а < 7; в) –105 < a < –96? 4. Сравните сначала данные числа, а затем – противоположные им: а) 10 и 15; б) –6 и –8; в) –12 и –1; г) 4 и –5. II. Объяснение нового материала. 1. Температура может как повышаться, так и понижаться. Повышение температуры выражают положительными числами, а понижение – отрицательными (привести различные примеры). 2. Длина пружины может как увеличиваться, так и уменьшаться. Увеличение длины пружины будем выражать положительными числами, а уменьшение – отрицательными. 3. Точка на координатной прямой может перемещаться влево или вправо по этой прямой. Перемещение точки вправо обозначают положительными числами, а перемещение влево – отрицательными числами (рисунок 68 учебника). 4. Вывод: увеличение любой величины можно выразить положительными числами, а уменьшение – отрицательными. III. Закрепление изученного материала. 1. Решить устно № 1001 (а). 2. Решить № 1002 на доске и в тетрадях. Решение. а) m = –6; б) m = 3,6; в) m = 60; г) m = –3,4. 3. Решить устно № 1004, используя рисунок 69 на странице 169 учебника. 4. Решить № 1005, используя координатную прямую. 5. Повторение изученного материала: 1) Решить № 1012. Решение. а) приведем обе дроби к знаменателю 30, тогда ; тогда в) 0,16 < х < 0,17; например, х = 0,162; 0,165; х = 0,167; 0,169. 2) Решить № 1014 самостоятельно. 3) Найдите значение выражения: а) |–4,8| + |5,2|; в) |–6,5| : |3,9|; д) б) |–5,21| – |–4,8|; г) |26,5| · |–8,3|; е) IV. Итог урока. 1. Ответить на вопросы на странице 168 учебника. 2. Точка х при перемещении на – 4 перешла в точку А(–1), а точка у при перемещении на 2,5 перешла в В (0,5). Найдите координаты точек х и у. 3. При перемещении точка Р(–2) перешла в точку К(1,5). Чему равно перемещение точки Р? 4. Сравните (устно): а) –298 и –196; б) –673 и –637; в) –6,4 и –18,9; г) –2,0003 и –2,03; д) 5. Найдите модуль числа (устно): а) 47; б) –2,9; в) 0,75; г) Домашнее задание: изучить п. 30; решить № 1015, 1017, 1019 (а). Урок 2 Изменение величин Цели: закрепить изученный материал, упражнять учащихся в сравнении чисел и нахождении модуля чисел, подготовить к контрольной работе, воспитание сознательного усвоения дисциплины, воспитание математической речевой культуры привитие навыков нравственного воспитания, воспитание трудолюбия, чувства коллективизма, привитие интереса к изучаемому предмету, развитие инициативы, познавательного интереса, обучение методам исследовательского поиска, развитие мыслительной деятельности, развитие практической направленности изучаемого материала. Планируемые результаты Предметные: Научиться объяснять смысл положительного и отрицательного изменения величин применительно к жизненным ситуациям. Показывать на координатной прямой перемещение точки Метапридметные: Коммуникативные: воспринимать текст с учетом поставленной учебной задачи, находить в тексте информацию, необходимую для решения. Регулятивные: формировать целевые установки учебной деятельности, выстраивать алгоритм действий. Познавательные: уметь строить рассуждения в форме связи простых суждений об объекте, его строении, свойствах и связях Личностные: формировать устойчивую мотивацию к обучению на основе алгоритма выполнения заданий Основные понятия: Изменение величин Ход урока Орг. момент Определение темы и цели урока I. Устная работа. 1. Решить устно № 1007 и № 1010 (д – з). 2. Решить № 1011 (б; г; д; е), используя координатную прямую. 3. Решить устно № 1009 по рисунку 71 учебника. II. Тренировочные упражнения. 1. Решить устно № 1001 (б). 2. Решить № 1003 самостоятельно с последующей проверкой. 3. Решить № 1006 с комментированием на месте. 4. Отметьте на координатной прямой точку А(–4). Найдите координату точки, в которую перейдет точка А при перемещении: а) на 2; б) на 6; в) на –3; г) на –4. 5. Точка А при перемещении на 5 перешла в точку В(–1), а точка С при перемещении на –3 перешла в точку Д(–1). Найдите координаты точек А и С. 6. При перемещении точка А(4) перешла в точку В(–1). Чему равно перемещение точки А? 7. Отметьте на координатной прямой точки Д(–6), Р(2), М(–1, 5), К(6) и в(4,5). Какие из этих точек имеют противоположные координаты? 8. Сравните числа: а) –249 и 248; г) б) –10,3 и –10,5; д) в) –0,07 и –0,007; е) 9. Найдите значение выражения: а) |–6,8| : |–17|; б) в) г) д) |–5,2| : |–13|; е) Решение. а) 6,8 : 17 = 0,4; г) б) в) 11,8 – 10. Отметьте на координатной прямой точку С(–4), приняв за единичный отрезок длину двух клеток тетради. Отметьте на этой прямой точки А, В, М и К, если М правее точки С на 7 клеток, В правее точки М на 11 клеток, А – середина отрезка СВ, К – середина отрезка АС. 11. Решить № 1029, используя координатную прямую. |