Главная страница
Навигация по странице:

  • Рнс. 17. Схема строения молекулы ДНК из двух спирально закрученных цепей (по Д. Уотсо-ну и Ф. Крику) (Цифры указывают на расстоя- ния ■ А между разными точками молекулы)

  • 7. Нуклеотидный состав ДНК из различных (по А. Ленинджеру, 1976) ИСТОЧНИКОВ

  • Репликация (удвоение) ДНК.

  • ПЕПТИДИЛЬНЫП ЦЕНТР АМИНОАЦИЛЬНЫЙ ЦЕНТР ПЕПТИДИЛТРАНС-ФЕРАЗА

  • Ингибиторы синтеза белка. В

  • В. Н. Сайтаниди Рецензент членкорреспондент расхн в. Ф. Красота Петухов В. Л. и др. П31 Ветеринарная генетика В. Л. Петухов, А. И. Жигачев, Г. А. Назарова. 2е изд., перераб и доп. М. Колос, 1996. 384 с ил. Учебники


    Скачать 5.3 Mb.
    НазваниеВ. Н. Сайтаниди Рецензент членкорреспондент расхн в. Ф. Красота Петухов В. Л. и др. П31 Ветеринарная генетика В. Л. Петухов, А. И. Жигачев, Г. А. Назарова. 2е изд., перераб и доп. М. Колос, 1996. 384 с ил. Учебники
    Анкорpetuhov_vet_genetika.doc
    Дата17.05.2017
    Размер5.3 Mb.
    Формат файлаdoc
    Имя файлаpetuhov_vet_genetika.doc
    ТипУчебники
    #7754
    страница7 из 45
    1   2   3   4   5   6   7   8   9   10   ...   45

    ХИМИЧЕСКИЙ СОСТАВ И СТРУКТУРА НУКЛЕИНОВЫХ КИСЛОТ

    Нуклеиновые кислоты впервые открыл И. Ф. Мишер в 1868 г. Он выделил из ядер клеток особое вещество кислотной природы и назвал его нуклеином. Впоследствии ему дали название «нук­леиновая кислота». Было обнаружено два типа нуклеиновых кис­лот. Их назвали в зависимости от углеводного компонента, вхо­дящего в состав. Нуклеиновую кислоту, в состав которой входит углевод дезоксирибоза, назвали дезоксирибонуклеиновой кислотой (ДНК), а в состав которой входит углевод рибоза, рибонуклеино-

    76

    вой кислотой (РНК). В период с 1900 по 1932 г. был определен химический состав нуклеиновых кислот. Они включают следую­щие компоненты:

    РНК

    Аденин, гуанин Цитозин, урацил Рибоза

    ДНК

    Аденин, гуанин Цитозин, тимин Дезоксирибоза

    Пуриновые основания Пиримидиновые основания Углеводный компонент

    Обе нуклеиновые кислоты включают остатки фосфорной кисло­ты. Различие заключается в том, что в состав РНК входит азотистое основание урацил вместо тимина и рибоза вместо дезоксирибозы.

    В 1936 г. на кафедре биохимии растений Московского уни­верситета А. Н. Белозерский с И. И. Дубровской впервые выде­лили ДНК в чистом виде из растительного материала. К середи­не 40-х годов было выяснено, что ДНК и РНК одновременно присутствуют в каждом живом организме.

    В конце 40-х — начале 50-х годов при изучении нуклеиновых кислот стали использовать новые физические и химические мето­ды исследования. В 1950 г. Э. Чаргафф установил правила нукле-отидных отношений, лежащие в основе строения всех ДНК.

    Правила Чаргаффа заключаются в том, что в ДНК содержание аденина равно содержанию тимина (А = Т), а содержание гуанина равно содержанию цитозина (Г = И), отсюда А + Г/Т + Ц = 1; сумма пуриновых нуклеотидов равна сумме пиримидиновых нуклео-тидов. В соответствии с этим правилом нуклеотидный состав разных организмов может варьировать только по величине А+Т/Г+Ц.

    К 1952 г. Р. Франклин и М. Уилкинс добились получения высококачественных рентгенограмм ДНК, показавших, что она имеет форму спирали и двойственную структуру.

    В 1953 г. Дж. Уотсон и Ф. Крик, опираясь на данные рентге-ноструктурного анализа и правила Чаргаффа, установили струк­туру ДНК. Согласно их модели молекула ДНК имеет двойную спираль, состоящую из двух полинуклеотидных цепей с общей осью (рис. 17). Диаметр двойной спирали ДНК равен 2 нм, а расстояние между витками 3,4 нм. На каждый виток спирали приходится 10 пар нуклеотидов, отсюда расстояние между азо­тистыми основаниями равно 0,34 нм.

    Структурными единицами полинуклеотидных цепей являются нуклеотиды. В состав нуклеотида входят: одно из азотистых ос­нований — пуриновое (аденин или гуанин) или пиримидиновое (тимин или цитозин), дезоксирибоза, фосфатный остаток. Эти компоненты соединены друг с другом в следующем порядке: азотистое основание дезоксирибоза — фосфатный остаток. Со­единение одного из оснований с дезоксирибозой приводит к образованию нуклеозида. В случае присоединения фосфатной группы к углеводной части нуклеозида образуется нуклеотид.

    77







    Дезоксирибоза в нуклеотидах соединяется с основаниями гли-козидной связью, а с фосфорной кислотой — эфирными связя­ми. Следовательно, по химическому составу любой нуклеотид — это фосфорный эфир нуклеозидов. В соответствии с этим нукле-отиды называются дезоксиадениловой, дезоксигуаниловой, дезокси-цитидиловой и тимидиловой кислотами.

    Наряду с главными азотистыми основаниями ДНК содержит также метилированные основания, такие, как 5-метилцитозин, 5-оксиметилцитозин и др. У животных количество 5-метилцито-зина в ДНК обычно не превышает 1,5—2 %.

    В каждой из цепей ДНК нуклеотиды последовательно соедине­ны друг с другом с помощью остатка фосфорной кислоты и моле­кулы дезоксирибозы. Дезоксирибоза связывается с одной молеку­лой фосфорной кислоты через углерод в положении 3', а с дру­гой — через углерод 5', образуя углеводно-фосфатный остов (рис. 18).

    Обе цепи в молекуле ДНК имеют противоположную поляр­ность. Это означает, что межнуклеотидная связь в одной цепи имеет направление 5'-»3', а в другой

    г




    Ц





    Азотистые основания нуклеотидов обеих цепей ДНК заключены внутри между витками спирали и соединены водородными связями. В соответствии с правилами Чаргаффа аденин одной цепи связан только с тимином другой цепи, а гуанин только с цитозином. Пара аденин — тимин соединена двумя водородными связями, а пара гуанин — цитозин — тремя. Такой по­рядок соответствия азотистых осно­ваний (А **Т и Г **Д) называется

    комплементарностью, и, следовательно, цепи в ДНК комплементарны, они взаимно дополняют друг друга.

    Углеводно-фосфатный остов по всей длине во всех молекулах ДНК имеет однотипную структуру и не может нести генетической информа­ции. В противоположность этому рас-

    Рнс. 17. Схема строения молекулы ДНК из двух спирально закрученных цепей (по Д. Уотсо-ну и Ф. Крику) (Цифры указывают на расстоя-

    ния ■ А между разными точками молекулы)

    78

    Рис. 18. Схема отрезка двухцепочной молекулы ДНК (по С. М. Гершензону)

    положение пуриновых и пиримидиновых оснований нуклеотидов вдоль цепи ДНК очень изменчиво и характерно для каждого данного типа молекул ДНК. Значит, наследственная информация зашифрована различной последовательностью оснований.

    Нуклеотидный состав ДНК значительно варьирует в зависи­мости от принадлежности организма к той или иной системати­ческой группе (табл. 7). Специфичность ДНК выражается соот­ношением А + Т/Г + Ц, получившим название коэффициента ви­довой специфичности.

    7. Нуклеотидный состав ДНК из различных (по А. Ленинджеру, 1976)

    ИСТОЧНИКОВ







    Нуклеотидный состав,

    мол. %

    Коэффициент

    Объект




    А

    Г

    Ц




    т

    специфичности А + Т/Г + Ц

    30,9 19,9 19,8 29,4 1,52

    Человек Животные:

    28,3 1,36

    29,2 1,38

    27.1 1,19
    32,9 1,79
    24,9 1,00

    23,6 0,93

    1. 1,50

    1. 2,70
      21,1 0,72

    1. 0,35

    29,3

    21,4

    21,0

    28,8

    20,5

    21,5

    27,3

    22,7

    22,8

    31,3

    18,7

    17,1

    25,0

    25,1

    25,0

    24,7

    26,0

    25,7

    30,8

    21,0

    19,0

    36,9

    14,0

    12,8

    21,0

    29,0

    28,9

    13,4

    37,1

    37,1

    овиа

    курица

    Растения, грибы, зерна пшеницы Дрожжи

    Aspergillus niger Бактерии:

    Е. coli

    Staphylococcus ayreus

    Clostridium perfinngens

    Bnicella abortus

    Sarcina lutea

    79


    топоизомераза

    В ДНК животных наблюдается избыток А + Т по отношению к Г + Ц. У грибов и бактерий встречаются формы как богатые А + Т, так и с преобладанием Г + Ц, в то же время есть близкие по коэффициенту специфичности к животным. Это говорит о том, что изменчивость в расположении оснований уже достаточ­на для того, чтобы обеспечить различия между генами этих организмов.

    Молекулы ДНК состоят примерно из 2-Ю3— МО8 и более нуклеотидов и имеют большую относительную молекулярную массу.

    Репликация (удвоение) ДНК. ДНК находится в хромосомах, и репликация ее происходит перед каждым удвоением хромосом и деле­нием клетки. Дж. Уотсон и Ф. Крик предложили схему удвоения ДНК, согласно которой спиралевидная двухцепочная ДНК снача­ла раскручивается (расплетается) вдоль оси. При этом водородные связи между азотистыми основаниями рвутся и цепи расходятся. Одновременно к нуклеотидам каждой цепи пристраиваются ком­плементарные азотистые основания нуклеотидов второй цепи, где против аденина встает тимин, против тимина — аденин, против гуанина — цитозин и т. д., которые с помощью ферментов ДНК-полимераз связываются в новые полинуклеотидные цепи. В ре­зультате из одной образуются две новые дочерние молекулы ДНК. Каждая дочерняя молекула, наследуя структуру одной цепи мате­ринской молекулы, строго сохраняет специфичность заключенной в ней информации. Поскольку матрицей для репликации служит одна из двух цепей молекулы, такой тип синтеза ДНК носит название полуконсервативной ауторепродукции.

    Дальнейшие исследования показали, что репликация бактери­альных и других молекул ДНК начинается в определенной точке старта. В хромосомах эукариот обнаружено по нескольку таких начальных точек. Цепи ДНК в точке инициации репликации разъединяются под влиянием особого белка геликазы (рис. 19). Возникают одноцепочные участки ДНК, которые становятся матрицами для репликации-притяжения комплементарных нук­леотидов. Эти одноцепочные участки связываются с особыми белками, которые их стабилизируют (препятствуют их компле­ментарному взаимодействию). Особый фермент топоизомераза (у прокариот назьгаается ДНК-гиразой) способствует расщеплению спирали ДНК в области репликационной вилки.

    Репликация на материнской цепи, идущей от точки старта в направлении 5'-*3', идет в виде сплошной линии. Эта цепь полу­чила название лидирующей. Синтез на второй цепи 3'->5' идет отдельными фрагментами в противоположном направлении (тоже 5'-»3')- Эта цепь получила название запаздывающей. Фрагментами являются небольшие участки ДНК (у кишечной палочки около 2000 нуклеотидов, у эукариот около 200). Они называются по

    80

    фрагменты Окозаки

    Рис. 19. Синтез лидирующей (вверху) и запаздывающей (внизу) цепей ДНК в вилке репликации (по В. Alberts, R. Sternglanz)

    имени открывшего их японского ученого Р. Оказаки. После за­вершения синтеза фрагменты Оказаки соединяются при помощи фермента лигазы в общую полинуклеотидную цепочку. У эукари­от репликация ДНК и соединение различных ее репликационных участков происходят в фазе S-периода интерфазы. После заверше­ния этой фазы в каждой хромосоме имеется две молекулы ДНК, которые становятся двумя идентичными хроматидами.

    Структура, способная к репликации (хромосома, плазмида, вирусный геном), называется репликоном.

    Самоудвоение молекул ДНК — основа устойчивости генети­ческой информации данного вида и обеспечивает материальную непрерывность наследственного вещества клетки.

    СТРОЕНИЕ И ТИПЫ РНК

    Многочисленными исследованиями было установлено, что синтез белка в клетке происходит не в ядре, где находится ДНК, а в цитоплазме. Следовательно, сама ДНК не может слу­жить матрицей для синтеза белка. Вставал вопрос о молекуляр­ных механизмах переноса информации, закодированной в ДНК (генах), из ядра в цитоплазму к месту синтеза белка. Сравнитель­но недавно выяснилось, что молекулами, ответственными за считывание и перенос информации, а также за преобразование этой информации в последовательность аминокислот в структуре белковой молекулы, являются рибонуклеиновые кислоты (РНК). Молекулы рибонуклеиновой кислоты имеют одну полинуклео­тидную цепь, Нуклеотиды молекулы РНК называются адениловой гуаншовой, уридшювой и цитцдиловой кислотами. На долю РНК приходится около 5—10 % общей массы клетки.

    81


    АМИНОКИСЛОТА


    АКЦЕПТОРНЫЙ КОНЕЦ


    D - ПЕТЛЯ


    Т - ПЕТЛЯ


    АНТИКОДОННАЯ ПЕТЛЯ

    Существует три основных вида РНК: информационная (иРНК), или матричная (мРНК), рибосомная (рРНК), и транспортная (тРНК). Они различаются по величине молекул и функциям. Все типы РНК синтезируются на ДНК при участии ферментов — РНК-полимераз. Информационная, или матричная, РНК состав­ляет 2—3 % всей клеточной РНК, рибосомная — 80—85, транс­портная — около 15 %.

    Информационная РНК (иРНК) впервые была обнаружена в 1957 г. Роль ее в том, что она считывает наследст­венную информацию с участка ДНК (гена) и в форме скопиро­ванной последовательности азотистых оснований переносит ее в рибосомы, где происходит синтез определенного белка. Каждая из молекул иРНК по порядку расположения нуклеотидов и по размеру соответствует гену в ДНК, с которого она была транс­крибирована. В среднем иРНК содержит 1500 нуклеотидов (75— 3000). Каждый триплет (три нуклеотида) на иРНК называется кодоноц. От кодона зависит, какая аминокислота встанет в дан­ном меЬте при синтезе белка.' Информационная РНК может обладать относительной молекулярной массой от 250 до 1000 тыс. Д (дальтон).

    Существует большое разнообразие иРНК как в отношении состава, так и величины молекулы. Это связано с тем, что в клетке находится большое количество разнообразных белков, а строение каждого белка обусловлено своим геном, с которого иРНК считала информацию.

    Транспортная РНК (тРНК) обладает относительно невысокой молекулярной массой порядка 24—29 тыс. Д и содер­жит в молекуле от 75 до 90 нуклеотидов. До 10 % всех нуклеоти­дов тРНК приходится на долю минорных оснований, что, по-ви­димому, защищает ее от действия гидролитических ферментов.

    Роль тРНК заключается в том, что они переносят аминокис­лоты к рибосомам и участвуют в процессе синтеза белка. Каждая аминокислота присоединяется к определенной тРНК. Ряд ами­нокислот обладает более одной тРНК. К настоящему времени обнаружено более 60 тРНК, которые отличаются между собой первичной структурой (последовательностью оснований). Вто­ричная структура у всех тРНК представлена в виде клеверного листа с двухцепочным стеблем и тремя одноцепочными петлями (рис. 20). На конце одной из цепей находится акцепторный участок — триплет ЦЦА, к аденину которого присоединяется специфическая аминокислота. Аминокислота присоединяется к тРНК под действием фермента аминоацил-тРНК-синтетазы, ко­торый «узнает» одновременно и аминокислоту, и тРНК. В голов­ке средней петли тРНК находится антикодон — триплет, состоя­щий из трех нуклеотидов. Антикодон комплементарен опреде­ленному кодону мРНК. При помощи антикодона тРНК «узнает» соответствующий кодон в иРНК, т. е. определяет место, куда

    82

    АНТИКОДОН

    Рис, 20. Вторичная структура тРНК (по Ричу и Киму)

    должна быть поставлена данная аминокислота в синтезируемой молекуле белка.

    Предполагается, что петли тРНК, не вовлеченные в связыва­ние и выполнение декодирующей функции аминокислоты, ис­пользуются для связывания тРНК с рибосомой и со специфичес­кой аминоацил-тРНК-синтетазой.

    Рибосомная РНК (рРНК). Размер рибосомных РНК эукариот составляет 5—28S (S — единица Сведберга, характеризующая скорость осаждения, седиментации частиц при ультрацентрифугировании), молекулярная масса 3,5-104— 1,5-106 Д. Они содержат 120—3100 нуклеотидов. Рибосомная РНК накапливается в ядре, в ядрышках. В ядрышки из цитоплазмы транспортируются рибосомные белки, и там происходит спонтанное образование субчастиц рибосом путем объединения белков с соответствующими рРНК. Субчастицы рибосомы вместе или врозь транспортируются через поры ядерной мембраны в цитоплазму.

    Рибосомы представляют собой органеллы величиной 20— 30 нм. Они построены из двух субчастиц разного размера и формы. На определенных стадиях белкового синтеза в клетке происходит разделение рибосом на субчастицы. Рибосомная РНК служит как бы каркасом рибосом и способствует первоначальному связыванию иРНК с рибосомой в процессе биосинтеза белка. Суб­частицы обозначают у эукариот как 60 и 40S. Целые рибосомы

    83

    осаждаются при 80S. 408-субчастица содержит 18S РНК и при­мерно 30 белков; 608-субчастица содержит 28S РНК, 5S РНК и 5,8S РНК. В состав этой частицы входит примерно 50 различных белков. У прокариот функциональная рибосома имеет константу седиментации 70S. 7015-рибосомы состоят из малой (30S) и боль­шой (50S) субчастиц. SOS-рибосомы содержат примерно равное количество рРНК и белка, у 70S-pn6ocoM соотношение РНК и белка составляет 2:1. Число рибосом в клетке прокариот равно примерно 104, у эукариот — около 105. В период синтеза белка рибосомы могут объединяться в полисомы, образуя более высоко­организованные комплексы.

    ГЕНЕТИЧЕСКИЙ КОД

    Представление о том, что генетическая информация о струк­туре белковых молекул зашифрована в ДНК путем определенно­го расположения нуклеотидов, конкретизировал Ф. Крик в гипо­тезе последовательности, согласно которой последовательность элементов гена определяет последовательность аминокислотных остатков в полипептидной цепи. Было установлено, что наслед­ственную информацию с ДНК считывает иРНК, которая образу­ется комплементарно одной из цепей ДНК. Однако не было известно, каким образом переводится нуклеотидная последова­тельность иРНК в аминокислотную последовательность поли­пептидной цепи. Можно было предположить, что генетический код не может состоять из одного или двух нуклеотидов, так как их только четыре и сочетаний из двух (43) может быть только 16, а аминокислот 20. Г. Гамов в 1954 г. впервые высказал мысль о том, что генетический код должен быть триплетным. В этом случае получается (43) 64 сочетания, и их вполне достаточно для кодирования всех аминокислот.

    Начало экспериментальному анализу природы генетического кода положили М. Ниренберг и Дж. Маттеи в 1961 г. Они созда­ли простейшие синтетические полимеры типа иРНК. Искусст­венно полученный полимер, содержащий только уридиновые нуклеотиды, в которых основанием является урацил, вводили в бесклеточную среду, полученную из кишечной палочки. В ре­зультате был получен полипептид, состоящий только из фенил-аланина — полифенилаланин. Кодон для фенилаланина был рас­шифрован как УУУ.

    К расшифровке генетического кода активно подключился С. Очоа с сотр. В течение 3—4 лет в лабораториях М. Ниренбер-га и С. Очоа был определен состав большинства кодонов. Одна­ко требовалось определить последовательность нуклеотидов в ко-донах. Это удалось сделать при помощи двух методов. Г. Корана с сотр. разработал метод химического синтеза ДНК-подобных полимеров с заданной последовательностью нуклеотидов, что

    84

    позволяло получить РНК также с заранее известной последова­тельностью нуклеотидов и использовать ее в бесклеточной систе­ме белкового синтеза. Второй метод предложили М. Ниренберг и П. Ледер, исходя из того, что промежуточными продуктами при синтезе белка являются аминокислоты, связанные с тРНК. Убе­дившись в том, что одного триплета иРНК (трех нуклеотидов) достаточно для связывания с рибосомой и тРНК, ученые исполь­зовали тринуклеотидные матрицы с известным чередованием ос­нований для того, чтобы изучить, какую аминокислоту доставит тРНК.

    В результате использования методов, разработанных Г. Кора-ной, М. Ниренбергом и П. Ледером, к 1966 г. были определены все триплеты, кодирующие ту или иную аминокислоту. Триплет иРНК получил название кодона. Генетический код был полнос­тью расшифрован (табл. 8), значит, была выяснена природа связи между структурой гена и соответствующего белка. Было установлено, что 61 триплет кодирует аминокислоты, 3 триплета не соответствуют никакой аминокислоте и определяют конец трансляции. .

    Выявлены следующие особенности генетического кода: 1) ге­нетический код триплетный (каждая аминокислота кодируется тремя нуклеотидами); 2) неперекрывающийся (соседние триплеты не имеют общих нуклеотидов); 3) вырожденный (за исключением метионина и триптофана все аминокислоты имеют более одного кодона); 4) универсальный (в основном одинаков для всех живых организмов); 5) в кодонах для одной аминокислоты первые два нуклеотида, как правило, одинаковы, а третий варьирует; 6) имеет линейный порядок считывания и характеризуется колине-арностью, т. е. совпадением порядка расположения кодонов в иРНК с порядком расположения аминокислот в синтезирующей­ся полипептидной цепи.

    Сравнительно недавно выяснилось, что в митохондриях нару­шается универсальность генетического кода. Четыре кодона в митохондриях изменили свой смысл: кодон УГА отвечает трип­тофану, АУА — метионину, а кодоны АГА и АГГ стали термини­рующими. В митохондриях синтезируется небольшое количество белков, которые используются ими же. Открытие новых кодонов у митохондрий может служить доказательством того, что код эволюционировал, что он не сразу стал таким, каким мы его знаем теперь.

    СИНТЕЗ БЕЛКА В КЛЕТКЕ

    В настоящее время можно считать установленным, что на­следственность реализуется в процессе биосинтеза белка. Синтез ферментов и других белков, необходимых для жизнедеятельности и развития организмов, происходит в основном на первой стадии

    85







    00

    86

    II


    >.i=r




    ?

    интерфазы, до начала репликации ДНК. В процессе синтеза белка различают этапы транскрипции и трансляции.

    Транскрипция заключается в том, что наследственная информация, записанная в ДНК (гене), точно транскрибируется (переписывается) в нуклеотидную последовательность иРНК. Синтез иРНК начинается с участка инициации транскрипции, называемого промотором. Промотор расположен перед геном и включает около 80 нуклеотидов. У вирусов и бактерий этот участок включает около 10 нуклеотидов (один виток спирали). Транскрипция осуществляется с помощью ферментов РНК-полимераз. РНК-полимераза прочно связывается с промотором и «расплавляет» его, разъединяя нуклеотиды комплементарных /цепей. Затем этот фермент начинает двигаться вдоль гена и по *" мере разъединения цепей ДНК на одной из них, которая являет­ся смысловой, ведет синтез иРНК, согласно принципу компле-ментарности присоединяя аденин к тимину, урацил к аденину, цитозин к гуанину и гуанин к цитозину. Те участки гена, на которых полимераза образовала иРНК, вновь соединяются, а синтезируемая молекула иРНК постепенно отделяется от ДНК. Конец синтеза иРНК определяется участком остановки транс­крипции — терминатором. Нуклеотидные последовательности промотора и терминатора узнаются специальными белками, ре­гулирующими активность РНК-полимеразы.

    В 1977 г. было обнаружено, что у эукариот в последователь-• ности нуклеотидов ДНК имеются отрезки, не содержащие ин­формации, которые были названы интронами. Участки ДНК, несущие информацию, называются экзонами.

    При считывании информации с определенного участка ДНК (гена) сначала образуется транскрипт всей последовательности (про-мРНК), а затем происходит процесс созревания иРНК, на­зываемый процессингом. При процессинге происходит сплайсинг, который заключается в том, что в ядре интроны из РНК как бы «выпетливаются» и удаляются, а информативные участки — экзо-ны соединяются при помощи ферментов лигаз в одну непрерыв­ную последовательность иРНК. Перед выходом из ядра к началь­ной части иРНК (5'-концу) присоединяется остаток метилиро­ванного гуанина, называемый «колпачком», а к концу иРНК (З'-концу) присоединяется примерно 200 остатков адениловой кислоты. В таком виде зрелая иРНК (матричная РНК) проходит через ядерную мембрану в цитоплазму, где соединяется с рибо­сомой. Считают, что у эукариот «колпачок» иРНК играет роль в связывании с малой субчастицей.

    Трансляция заключается в том, что последовательность расположения нуклеотидов в иРНК переводится в строго упоря­доченную последовательность расположения аминокислот в мо­лекуле синтезируемого белка. Процесс трансляции включает два

    87








    ПЕПТИДИЛЬНЫП ЦЕНТР


    АМИНОАЦИЛЬНЫЙ ЦЕНТР


    ПЕПТИДИЛТРАНС-ФЕРАЗА

    этапа: активирование аминокислот и непосредственно синтез белковой молекулы.

    Активирование свободных аминокислот и присоединение их к тРНК осуществляются при помощи ферментов аминоацил-тРНК-синтетаз. Точность процесса трансляции зависит, по-видимому, в значительной мере от того, с какой точностью каждая синтета-за выберет одну определенную аминокислоту и присоединит ее к соответствующей тРНК. Считается, что в молекуле каждой ами-ноацил-тРНК-синтетазы имеется по крайней мере три дентра связывания: для аминокислоты, тРНК и АТФ. Сначала осущест­вляется связь аминоацил-тРНК-синт етазы с определенной чами-нокислотой, а затем активированная аминокислота присоединя­ется к акцепторному участку (ЦЦА) транспортной РНК. В ре­зультате образуется аминоацил-тРНК (аа-тРНК). Нагруженная аминокислотой тРНК взаимодействует с одним из белковых факторов, который в комплексе с ГТФ необходим для транспор­та тРНК к рибосоме и связывания с ней.

    В период трансляции происходит реализация генетической информации в процессе синтеза белковой молекулы определен­ной структуры. Синтез подразделяется на три стадии: инициа­ции, элонгации и терминации.

    Инициация. В__период стадии инициации рибосома сначада представлена двумя отдельными субчастицами, так как для нача­ла процесса необходима рибосома диссоциированная.

    Инициация синтеза полипептидной цепи начинается с присо­единения малой субчастицы рибосомы к соответствующему цент­ру связывания на иРНК. Сигналом инициации трансляции слу­жит кодон для метионина АУТ, который расположен в начале иРНК (рис. 21). К кодону АУГ своим антикодоном УАЦ присо­единяется тРНК, нагруженная аминокислотой метионином (у бактерий инициаторной является тРНК, которая переносит фор-милметионин). Затем к комплексу, состоящему из малой субъеди­ницы, иРНК и тРНК, присоединяется большая субъединица ри­босомы. В результате образуется полностью собранная рибосома (80S), включающая одну молекулу иРНК и инициаторную тРНК с аминокислотой. В большой субъединице имеется аминоацильный и пептидильный центры. Сначала первая аминокислота (метио-нин) попадает в аминоацильный центр. В процессе присоединения большой субчастицы рибосомы иРНК продвигается на один кодон, тРНК из аминоацильного центра перемещается в пепти­дильный центр. В аминоацильный центр поступает следующий кодон иРНК, который может принять следующую аминоацил-тРНК. С этого момента начинается вторая стадия трансляции.

    Элонгация. В эту стадию многократно повторяется цикл при­соединения аминокислот к растущей полипептидной цепи. Так, в аминоацильный центр рибосомы строго в соответствии с кодо-ном иРНК поступает вторая нагруженная тРНК, которая своим

    88



    Рис. 21. Схема синтеза белка в клетке:

    вверху — инициация; внизу — элонгация

    антикодоном соединяется с комплементарным кодоном иРНК. Сразу же при помощи фермента пептидилтрансферазы предше­ствующая аминокислота (метионин) своей карбоксильной груп­пой (СООН) соединяется с аминогруппой (NH2) вновь пришед­шей аминокислоты. Между ними образуется пептидная связь (—СО—NH—). В результате тРНК, принесшая метионин, осво­бождается, а в аминоацильном центре к тРНК присоединен уже дипептид. Для дальнейшего процесса элонгации требуется осво­бодить аминоацильный центр. И он освобождается.

    В результате процесса транслокации дипептидил-тРНК про­двигается из аминоацильного центра в пептидильный. Это про­исходит благодаря перемещению рибосомы на один кодон при участии фермента транслоказы и белкового фактора элонгации. Освободившаяся тРНК и кодон иРНК, который был связан с ней, выходят из рибосомы. В освободившийся аминоацильный центр следующая тРНК приносит аминокислоту в соответствии с поступившим туда кодоном. Эта аминокислота при помощи пеп­тидной связи соединяется с предыдущей. При этом рибосома снова продвигается еще на один кодон, и процесс повторяется. Полипептидный синтез в рибосоме идет до тех пор, пока в аминоацильный центр не поступит терминирующий кодон.

    Терминация. После того как в аминоацильный центр рибосо­мы поступит терминирующий кодон иРНК (УАА, УАГ или УГА), к нему присоединяется один из белковых факторов терминации

    89

    и блокируется дальнейшая элонгация цепи. Полипептидная цепь отделяется от тРНК и рибосомы, освобождаются тРНК и иРНК. Рибосомные субъединицы диссоциируют и могут принять учас­тие в синтезе следующей полипептидной цепи.

    На одной молекуле иРНК работает не одна рибосома, а мно­гие (до 100). На каждой из рибосом строится полипептидная цепь. У бактерий транскрипция и трансляция связаны между собой и трансляция начинается до завершения синтеза иРНК на ДНК. Образующиеся при синтезе белка полипептидные цепи претерпевают посттрансляционные преобразования и в конеч­ном итоге выполняют специфические функции, принимая учас­тие в определении признаков организма.

    Ингибиторы синтеза белка. В последние годы был выявлен целый ряд ингибиторов, вызывающих нарушение реализации ге­нетической информации у микроорганизмов. Примером могут служить антибиотики. Одним из мощных ингибиторов является пуромицин. Он имеет структурное сходство с концевым остат­ком адеймловой кислоты в аминоацил-тРНК, легко взаимодейст­вует с А-участком пептидил-тРНК с образованием пептидилпу-ромицина. Пептидилпуромицин нарушает элонгацию, вызывая обрыв реакции. Предполагается, что стрептомицин и неомицин вызывают ошибки в трансляции иРНК, приводящие к наруше­нию соответствия между кодонами и включаемыми аминокисло­тами. Например, кодон УУУ вместо фенилаланина начинает ко­дировать лейцин, в результате образуется аномальный белок, что ведет к гибели бактерий. Тетрациклины являются ингибиторами синтеза белка в 708-рибосоме. Считается, что тетрациклины тор­мозят связывание аминоацил-тРНК с аминоацильным центром рибосом. Синтез клеточной иРНК тормозит антибиотик рифа-мицин, используемый при лечении туберкулеза. Этот препарат тормозяще действует на ДНК-зависимую РНК-полимеразу путем связывания с ней. Наиболее чувствительна к нему бактериальная РНК-полимераза. Недавно обнаружено и противовирусное дей­ствие рифамицина. Его используют при лечении трахомы, кото­рая вызывается ДНК-содержащим вирусом. Известно ингиби-рующее действие на синтез белка у микроорганизмов и целого ряда других антибиотиков.

    Контрольные вопросы. 1. В чем состоит биологическая роль нуклеиновых кислот? 2. Как была доказана роль ДНК в наследственности? 3. Как построена ДНК? 4. Каким образом происходит репликация ДНК? 5. Каковы различия молекул иРНК, рРНК, тРНК? 6. Что такое транскрипция? 7. Что означает термин «трансляция»? 8. Как осуществляется синтез полипептида в рибосомах?

    1   2   3   4   5   6   7   8   9   10   ...   45


    написать администратору сайта