Главная страница
Навигация по странице:

  • Таблица 1.3 Содержание различных оксидов в базальтовых породах, мас. %

  • Семчиков Ю.Д. Высокомолекулярные соединения. Высокомолекулярные соединения


    Скачать 12.87 Mb.
    НазваниеВысокомолекулярные соединения
    АнкорСемчиков Ю.Д. Высокомолекулярные соединения.docx
    Дата28.01.2017
    Размер12.87 Mb.
    Формат файлаdocx
    Имя файлаСемчиков Ю.Д. Высокомолекулярные соединения.docx
    ТипДокументы
    #935
    страница2 из 33
    1   2   3   4   5   6   7   8   9   ...   33


    Таблица 1. 1 Содержание различных веществ в теле человека


    Тип вещества

    Массовый, %

    Вода

    60-80

    Сухой остаток:

    20-40

    белки

    15-20

    жиры

    3-20

    полисахариды

    1-15

    низкомолекулярные соединения

    <2

    нуклеиновые кислоты

    <0,1


    Полисахариды образуются из низкомолекулярных соединений общей формулы СnН2nOn, называемых сахарами или углеводами. Для Сахаров характерно наличие альдегидной или кетонной групп, в соответствии с этим первые называются альдозами, вторые - кетозами. Среди Сахаров с n = 6, называемых гексозами, имеется 16 изомерных альдогексоз и 16 кетогексоз. Однако только четыре из них (a-галактоза, d-манноза, d-глюкоза, d-фруктоза) встречаются в живой клетке. Биологическая роль Сахаров определяется тем, что они являются источником энергии, необходимой организму, которая выделяется при их окислении, и исходным материалом для синтеза макромолекул.

    В последнем случае большое значение имеет способность Сахаров образовывать циклические структуры, что иллюстрируется ниже на примере глюкозы и фруктозы:

    В водном растворе глюкоза содержит 99, 976% циклического изомера. У кетогексоз циклические изомеры пятичленные. Циклические молекулы моносахаридов могут связываться между собой с образованием так называемых гликозидных связей путем конденсации гидроксильных групп.

    Наиболее распространены полисахариды, повторяющиеся звенья которых являются остатками a-D-глюкопиранозы или ее производных. Наиболее известна и широко применяема целлюлоза. В этом полисахариде кислородный мостик связывает 1- и 4-й атомы углерода в соседних звеньях, такая связь называется а-1, 4-гликозидной:

    Химический состав, аналогичный целлюлозе, имеют крахмал, состоящий из амилозы и аминопектина, гликоген и декстран. Отличие первых от целлюлозы состоит в разветвленности макромолекул, причем амилопектин и гликоген могут быть отнесены к сверхразветвленным природным полимерам, т.е. дендримерам нерегулярного строения. Точкой ветвления обычно является шестой атом углерода a-D-глюкопиранозного кольца, который связан гликозидной связью с боковой цепью. Отличие декстрана от целлюлозы состоит в природе гликозидных связей - наряду с а-1,4-, декстран содержит также а-1,3- и а-1,6-гликозидные связи, причем последние являются доминирующими.

    Химический состав, отличный от целлюлозы, имеют хитин и хитозан, но они близки к ней по структуре. Отличие заключается в том, что при втором атоме углерода a-D-глюкопиранозных звеньев, связанных а-1,4-гликозидными связями, ОН-группа заменена группами -NНСН3СОО в хитине и группой -NH2 в хитозане.

    Целлюлоза содержится в коре и древесине деревьев, стеблях растений: хлопок содержит более 90 % целлюлозы, деревья хвойных пород - свыше 60 %, лиственных - около 40%. Прочность волокон целлюлозы обусловлена тем, что они образованы монокристаллами, в которых макромолекулы упакованы параллельно одна другой. Целлюлоза составляет структурную основу представителей не только растительного мира, но и некоторых бактерий.

    В животном мире в качестве опорных, структурообразующих полимеров полисахариды «используются» лишь насекомыми и членистоногими. Наиболее часто для этих целей применяется хитин, который служит для построения так называемого внешнего скелета у крабов, раков, креветок. Из хитина деацетилированием получается хитозан, который, в отличие от нерастворимого хитина, растворим в водных растворах муравьиной, уксусной и соляной кислот. В связи с этим, а также благодаря комплексу ценных свойств, сочетающихся с биосовместимостью, хитозан имеет большие перспективы широкого практического применения в ближайшем будущем.

    Крахмал относится к числу полисахаридов, выполняющих роль резервного пищевого вещества в растениях. Клубни, плоды, семена содержат до 70% крахмала. Запасаемым полисахаридом животных является гликоген, который содержится преимущественно в печени и мышцах.

    Функцию запасаемого питательного продукта выполняет инулин, который содержится в спарже и артишоках, что придает им специфический вкус. Его мономерные звенья пятичленны, поскольку фруктоза относится к кетоам, в целом же этот полимер построен так же, как полимеры глюкозы.

    Прочность стволов и стеблей растений, помимо скелета из целлюлозных волокон, определяется соединительной растительной тканью. Значительную ее часть в деревьях составляет лигнин - до 30 %. Его строение точно не установлено. Известно, что это относительно низкомолекулярный (М

    104) сверхразветвленный полимер, образованный в основном из остатков фенолов, замещенных в орто-положении группами -ОСН3, в пара-положении группами -СН=СН-СН2ОН. В настоящее время накоплено громадное количество лигнинов как отходов целлюлозно-гидролизной промышленности, но проблема их утилизации не решена. К опорным элементам растительной ткани относятся пектиновые вещества и, в частности пектин, находящийся в основном в стенках клеток. Его содержание в кожуре яблок и белой части кожуры цитрусовых доходит до 30%. Пектин относится к гетерополисахаридам, т.е. сополимерам. Его макромолекулы в основном построены из остатков D-галактуроновой кислоты и ее метилового эфира, связанных a-1,4-гликозидными связями:

    Из пентоз значение имеют полимеры арабинозы и ксилозы, которые образуют полисахариды, называемые арабинами и ксиланами. Они, наряду с целлюлозой, определяют типичные свойства древесины.

    Упомянутый выше пектин относится к гетерополисахаридам. Помимо него, известны гетерополисахариды, входящие в состав животного организма. Гиалуроновая кислота входит в состав стекловидного тела глаза, а также жидкости, обеспечивающей скольжение в суставах (она находится в суставных сумках). Другой важный полисахарид животных - хондроитинсульфат - содержится в ткани и хрящах. Оба полисахарида часто образуют в организме животных сложные комплексы с белками и липидами.

    Белки. В животном мире в качестве опорного, структурообразующего полимера обычно выступают белки. Эти полимеры построены из 20 типов так называемых а-аминокислот общей формулы:

    В табл. 1.2 представлены важнейшие аминокислоты, образующие белки. Остатки аминокислот связаны в макромолекулы белка пептидными связями, возникающими в результате реакции карбоксильных и аминогрупп. Ниже эта реакция приведена для двух аминокислот - глицина и аланина:

    Из табл. 1.2 видно, что большинство аминокислот, из остатков которых построен белок, имеют достаточно простое строение и алифатический радикал. Реже встречаются аминокислоты, содержащие ароматические и насыщенные циклы. Практически все аминокислоты содержат атомы С, Н, О, N, и только цистеин содержит, наряду с ними, атом серы. Образование сульфидных мостиков играет важную роль в процессах структурообразования в белках. В результате соответствующей реакции, протекающей за счет сульфогидрильных групп цистеина, образуются меж- и внутримолекулярные «сшивки» макромолекул белка. Помимо карбоксильной и аминогрупп, аминокислоты белка могут содержать также гидроксильные группы, как, например в серине и треонине.
    Таблица 1.2

    Значение белков в живой природе трудно переоценить. Это строительный материал живых организмов, биокатализаторы - ферменты, обеспечивающие протекание реакций в клетках, и энзимы, стимулирующие определенные биохимические реакции, т.е. обеспечивающие избирательность биокатализа. Наши мышцы, волосы, кожа состоят из волокнистых белков. Белок крови, входящий в состав гемоглобина, способствует усвоению кислорода воздуха, другой белок - инсулин - ответственен за расщепление сахара в организме и, следовательно, за его обеспечение энергией. Молекулярная масса белков колеблется в широких пределах. Так, инсулин - первый из белков, строение которого удалось установить Ф.Сэнгеру в 1953 г., содержит около 60 аминокислотных звеньев, а его молекулярная масса составляет лишь 12000. К настоящему времени идентифицировано несколько тысяч молекул белков, молекулярная масса некоторых из них достигает 106 и более.

    Следует подчеркнуть, что многообразие форм жизни обусловлено невероятно большим числом изомерных макромолекул, которые могут быть получены из аминокислот 20 типов. Согласно расчету биохимика Р.Синджа, белок, содержащий 288 аминокислотных остатков, может содержать 10300 изомеров. Каждая из жизненно важных функций, например катализ биохимических реакций, выполняется белком определенного строения и только им. Классическим примером является белок гемоглобина. Изменение порядка чередования около 300 аминокислотных остатков, входящих в его макромолекулу, путем перестановки местами хотя бы пары из них, приводит к тяжелому заболеванию животных - серповидной анемии.

    Нуклеиновые кислоты. В 1868 г. швейцарский ученый Фридрих Мишер выделил из ядер клеток фосфорсодержащее вещество, которое он назвал нуклеином. Позднее это и подобные ему вещества получили название нуклеиновых кислот. Их молекулярная масса может достигать 109, но чаще колеблется в пределах 105-106. Исходными веществами, из которых построены нуклеотиды - звенья макромолекул нуклеиновых кислот, являются: сахар, фосфорная кислота, пуриновые и пиримидиновые основания. В одной группе кислот в качестве сахара выступает рибоза, в другой - дезоксирибоза:

    В соответствии с природой сахара, входящего в их состав, нуклеиновые кислоты называются рибонуклеиновой и дезоксирибонуклеиновой кислотами. Общеупотребительными сокращениями являются РНК и ДНК. Нуклеиновые кислоты встречаются во всех живых организмах. Последние делятся на две группы:

    прокариоты, к которым относятся одноклеточные, т.е. древние и существующие ныне бактерии, их единственная клетка не имеет ядра и содержит одну двухнитевую спираль ДНК;

    эукариоты, которые включают животных, растения, грибы и простейшие, их клетки содержат ядра, в которых сконцентрирована ДНК, тогда как РНК находится как внутри, так и вне ядра.

    Как уже упоминалось выше, звенья нуклеиновых кислот, называемые нуклеотидами, содержат остатки фосфорной кислоты, сахара и оснований. Образование цепи из нуклеотидов происходит в результате катализируемой ферментами конденсации групп -ОН остатков сахара и фосфорной кислоты. В результате макромолекулы всех нуклеиновых кислот имеют цепи с регулярным чередованием остатков сахара и фосфорной кислоты, что схематически может быть представлено следующим образом:

    Сахара относятся к группе пентоз (см. полисахариды в этом же разделе), основания - к рядам пиримидина и пурина. Упомянутые соединения представлены на схеме. Каждая из нуклеиновых кислот построена из четырех типов нуклеотидов, которые отличаются химической природой основания. ДНК содержит два основания пуринового ряда - аденин и гуанин и два основания пиримидинового ряда - цитозин и тимин. В РНК пуриновые основания те же, пиримидиновые основания несколько отличаются, это цитозин и урацил. Все эти основания присутствуют на приведенных далее схемах, на первой из них изображен фрагмент макромолекулы РНК:

    Из этого примера видно, что основная цепь нуклеиновых кислот образуется в результате конденсации гидроксильных групп, связанных с 3'- и 5'-атомами углерода сахара рибозы в РНК (представлено на схеме) и дезоксирибозы в ДНК - с группами ОН фосфорной кислоты. Основание во всех случаях присоединено к 1'-атому сахара. Одна из групп ОН фосфорной кислоты не участвует в реакции поликонденсации. Для дважды этерифицированной фосфорной группы найдено pK = 1,5, следовательно, нуклеиновые кислоты, содержащие несвязанные P-OH-группы, могут быть отнесены к достаточно сильным кислотам.

    В 1953 г. Уотсон и Крик установили, что ДНК образует вторичную структуру в виде двойной спирали. Такая спираль образуется при скручивании двух макромолекул ДНК вокруг общей оси и фиксируется водородными связями между основаниями, связанными с разными цепями. Всегда попарно связываются пуриновые и пиримидиновые основания, поскольку только при этом условии сечение двойной спирали остается неизменным по длине. Исходя из принципа достижения максимальной энергии водородных связей, всегда оказываются попарно связанными тимин с аденином и цитозин с гуанином. Из схемы видно, что только в этой комбинации образуется максимальное количество водородных связей из числа возможных, и их энергия близка к максимальной, поскольку три атома, связанные водородной связью, во всех случаях лежат на линии, близкой к прямой:

    Нуклеиновые кислоты играют наиболее ответственную роль в процессах жизнедеятельности. С их помощью решаются две важнейшие задачи: хранения и передачи наследственной информации и матричный синтез макромолекул ДНК, РНК и белка. Наследственная информация зашифрована в макромолекулах ДНК в виде последовательности расположения четырех типов нуклеотидов, содержащих четыре разных основания. Такие последовательности называются генами. Они расположены в виде «отдельных островов» вдоль всей цепи ДНК, их суммарная длина составляет 3-5 % от общей длины макромолекулы.

    К важнейшим процессам матричного синтеза относятся:

    репликация, в ходе которой двойная спираль «расплетается» (сразу во многих местах) и на каждой материнской ДНК синтезируется дочерняя, комплементарная первой, таким образом, из исходной спиралиобразуются две идентичные ей; одна из них переносит в новую клетку, образующуюся при делении материнской, наследственную информацию;

    транскрипция или синтез на молекулах ДНК так называемой информационной м-РНК, при котором генетическая информация, заложенная в ДНК, «сбрасывается» на м-РНК и кодируется там в виде последовательности расположения нуклеотидов;

    трансляция или синтез белка на молекулах м-РНК, в данном случае используется трехбуквенный код, т.е. последовательность из трех нуклеотидов матричной м-РНК определяет тип очередной аминокислоты из 20 возможных, которая должна присоединиться к растущей полипептидной цепи белка.

    Все перечисленные реакции катализируются ферментами - белками, а инициирование многих процессов осуществляется с помощью РНК.

    Природные неорганические полимеры. Природные неорганические полимеры составляют основу земной коры, толщина которой достигает 15 км (литосфера). Литосфера образовалась и образуется при выходе на поверхность Земли расплавленной магмы, в которой химические реакции протекают при высокой температуре и давлении. Основной горной породой являются базальты. В табл. 1.3 приведены данные по составу базальтовых горных пород, полученных из проб, взятых со дна океанов Земли и лунных морей. Видно, что состав базальтовых пород Земли и ее спутника весьма близок, он состоит в основном из оксида кремния и в значительно меньшей степени из оксидов железа и алюминия. Оксид кремния является типичным полимерным кристаллическим телом, т.е. трехмерным полимером. Наряду с этим, для него известны двухмерные (подобные графиту) и цепные полимеры (рис. 1.1).

    Основной структурной единицей всех полисиликатов является тетраэдр SiO4, в вершинах которого расположены атомы кислорода, в центре - атом кремния. Структура полимерного кристаллического тела с регулярной трехмерной структурой из SiO2 аналогична структуре алмаза - трехмерного полимера углерода. В обоих случаях регулярная трехмерная структура может быть получена при совмещении граней структурных единиц - тетраэдров. Подобный полимер встречается в природе в виде прозрачного минерала кварца, известного также как горный хрусталь. Полимерное тело с регулярной трехмерной структурой под названием корунд образует также одна из модификаций Al2O3. Окрашенные формы (за счет примесей) кварца и корунда встречаются в природе в виде драгоценных камней. К наиболее известным из них относятся аметист, топаз, опал (кварц), рубин, сапфир (корунд).
    Таблица 1.3 Содержание различных оксидов в базальтовых породах, мас. %


    Оксид

    Лунный грунт

    Земная кора

    SiO2

    Al2O3

    FeO

    TiO2

    MgO

    CaO

    41-46

    7-14

    18-22

    1-12

    7-16

    8-12

    44-53

    13-19

    7-14

    0,9-3,3

    4-10

    8-12

    На рис. 1.1 представлены также фрагменты макромолекул линейных и двухмерно сшитых линейных двухтяжевых полисиликатов. Такие структуры могут быть получены при сочетании тетраэдров SiO2 вершинами, при этом, ионам кислорода должны соответствовать свободные вершины. Слоистые структуры SiO4 образуются при сочетании тетраэдров ребрами, при этом один атом кислорода должен оставаться свободным. Линейные макромолекулы SiO2 входят в состав минералов пироксен, энстатит, диопсид, сподумен, амфиболит, тремолит и др. Последние составляют основу природного волокнистого неорганического материала, известного как асбест. В состав многих минералов входят слоистые полимерные структуры SiO2, например в состав талька и каолинита (белой глины), где они чередуются со слоями полимерных гидроксида магния - в первом случае и гидроксида алюминия - во втором.

    Помимо полисиликатов в природе широко распространены полимеры алюмосиликатов - линейные, двухмерно и трехмерно сшитые. Среди последних наиболее известны цеолиты с общей формулой MO.Al2O3.xSiO2.yH2O, где М - металл I или II групп. Цеолиты являются прекрасными сорбентами, их удельная поверхность выше, чем угля. Благодаря этому цеолиты широко используются на практике в качестве так называемых молекулярных сит.
    1   2   3   4   5   6   7   8   9   ...   33


    написать администратору сайта