Главная страница
Навигация по странице:

  • Структурообразующие функции.

  • Защитные функции.

  • Запасные функции. И с ней связана энергетическая функция.

  • ВОПРОС № 2. Методы биохимии. Электрофорез.

  • ВОПОРОС № 3. Хроматография. Хроматография

  • ВОПРОС № 4. Методы количественного определения белка в растворе.

  • Вопрос Белки. Разнообразие. Функции


    Скачать 362.81 Kb.
    НазваниеВопрос Белки. Разнообразие. Функции
    Анкорitgovaya_1_1.docx
    Дата18.05.2017
    Размер362.81 Kb.
    Формат файлаdocx
    Имя файлаitgovaya_1_1.docx
    ТипДокументы
    #7839
    страница1 из 8
      1   2   3   4   5   6   7   8

    ВОПРОС № 1.Белки. Разнообразие. Функции.

    Особая роль в жизнедеятельности живых организмов принадлежит белкам. Белки́  высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот. В составе белков в организме человека встречают только 20 альфа-аминокислот. В последнее время к протеиногенным аминокислотам иногда причисляют трансляционно включаемые селеноцистеин (Sec, U) и пирролизин (Pyl, O). Это так называемые 21-я и 22-я аминокислоты. На долю белков внутри клетки приходится более половины их сухого вещества. Видовая и индивидуальная специфичность набора белков в данном организме определяет особенности его строения и функционирования. В организме человека содержится свыше 50 000 индивидуальных белков, отличающихся первичной структурой, конформацией, строением активного центра и функциями. Белки построены из 20 химически различных аминокислот, каждая из которых может занимать любое положение в полипептидной цепи. Кроме того, белки различаются количеством аминокислот, из которых они построены. Однако большинство таких белков в среде должны принимать множество конформаций с приблизительно одинаковой энергией, но разными химическими свойствами и функциями. Поэтому в эволюции, по-видимому, была отобрана лишь небольшая часть возможных вариантов белков, которые способны принимать единственную стабильную конформацию.

    Функции, выполняемые белками, распределяются примерно следующим образом.

    Структурообразующие функции. Структурные белки отвечают за поддержание формы и стабильности клеток и тканей. В качестве примера структурного белка молекулы коллагена. К структурным белкам можно отнести также гистоны, функцией которых является организация укладки ДНК в хроматине.

    Транспортные функции. Наиболее известным транспортным белком является гемоглобин эритроцитов, ответственный за перенос кислорода и диоксида углерода между легкими и тканями. В плазме крови содержатся множество других белков, выполняющих транспортные функции. Так, преальбумин переносит гормоны щитовидной железы — тироксин и трииодтиронин. Ионные каналы и другие интегральные мембранные белки осуществляют транспорт ионов и метаболитов через биологические мембраны.

    Защитные функции. Иммунная система защищает организм от возбудителей болезней и чужеродных веществ. Иммуноглобулин G, который на эритроцитах образует комплекс с мембранными гликолипидами. Физическая защита – коллаген.

    Регуляторные функции. К регуляторным белкам относят большую группу белковых гормонов, участвующих в поддержании постоянства внутренней среды организма, которые воздействуют на специфические клетки-мишени. Кроме того, к регуляторным относят белки, присоединение которых к другим белкам или иным структурам клетки регулирует их функцию. Например, белок кальмодулин в комплексе с четырьмя ионами Са2+ может присоединяться к некоторым ферментам, меняя их активность. В регуляции обмена веществ и процессов дифференцировки принимают решающее участие ДНК-ассоцированиые белки (факторы транскрипции). Особенно детально изучено строение и функции белков-активаторов катаболизма и других бактериальных факторов транскрипции.

    Катализ. Среди всех известных белков наиболее многочисленную группу составляют ферменты.

    Двигательные функции. Взаимодействие актина с миозином ответственно за мышечное сокращение и другие формы биологической подвижности.

    Запасные функции. И с ней связана энергетическая функция. В растениях содержатся запасные белки, являющиеся ценными пищевыми веществами. В организмах животных мышечные белки служат резервными питательными веществами, которые мобилизуются при крайней необходимости. К таким белкам относятся так называемые резервные белки, которые запасаются в качестве источника энергии и вещества в семенах растений и яйцеклетках животных.

    Рецепторная функция. Белковые рецепторы могут как находиться в цитоплазме, так и встраиваться в клеточную мембрану. Одна часть молекулы рецептора воспринимает сигнал, которым чаще всего служит химическое вещество, а в некоторых случаях — свет, механическое воздействие (например, растяжение) и другие стимулы. При воздействии сигнала на определённый участок молекулы — белок-рецептор — происходят её конформационные изменения. В результате меняется конформация другой части молекулы, осуществляющей передачу сигнала на другие клеточные компоненты.

    Сигнальная функция. Сигнальная функция белков — способность белков служить сигнальными веществами, передавая сигналы между клетками, тканями, о́рганами и разными организмами. Часто сигнальную функцию объединяют с регуляторной, так как многие внутриклеточные регуляторные белки тоже осуществляют передачу сигналов.

    Сигнальную функцию выполняют белки-гормоны, цитокины, факторы роста и др.
    ВОПРОС № 2. Методы биохимии. Электрофорез.

    Получение индивидуальных белков из биологического материала (тканей, органов, клеточных культур) требует проведения последовательных операций, включающих:

    • дробление биологического материала и разрушение клеточных мембран;

    • фракционирование органелл, содержащих те или иные белки;

    • экстракцию белков (перевод их в растворённое состояние);

    • разделение смеси белков на индивидуальные белки.

    Для разрушения биологического материала используют методы: гомогенизации (измельчения) ткани, метод попеременного замораживания и оттаивания, а также обработку клеток ультразвуком. Наиболее трудоёмкий этап получения индивидуальных белков - их очистка от других белков, находящихся в растворе, полученном из данной ткани. Часто изучаемый белок присутствует в небольших количествах, составляющих доли процента от всех белков раствора.

    Так как белки обладают конформационной лабильностью, при работе с белками следует избегать денатурирующих воздействий, поэтому выделение и очистка белков происходят при низких температурах.

    После достижения полной экстракции белков, т.е. перевода белков в растворенное состояние, приступают к разделению – фракционированию смеси белков на индивидуальные белки. Для этого применяют разнообразные методы: высаливание, тепловую денатурацию, осаждение органическими растворителями, хроматографию, электрофорез, распределение в двухфазных системах, кристаллизацию и др.

    Электрофорез – явление перемещения частиц коллоидных растворов под действием внешнего электрического поля.



    Виды: электрофорез в жидкостях, на бумаге и в блоках (крахмальном, полиакриламидном и т.д.)

    Электрофорез на бумаге осуществляется на листах (полосках) хроматографич. или фильтровальной бумаги, концы которой опущены в электродные камеры. Разделяемая смесь наносится на бумагу в виде пятна либо узкой зоны. По способу отведения теплоты, выделяющейся при прохождении через бумагу электрич. тока, используют приборы: с охлаждающими пластинами из изолирующих материалов; с охлаждающей несмешивающейся с водой орг. жидкостью (рис. 3), например керосином; с естеств. охлаждением бумаги на воздухе или во влажной камере.

    В отличие от электрофореза на бумаге, где скорость движения белков пропорциональна только их суммарному заряду, в полиакриламидном геле скорость движения белков пропорциональна их молекулярным массам.

    Разрешающая способность электрофореза в полиакриламидном геле выше, чем на бумаге. При электрофорезе белков сыворотки крови человека на бумаге обнаруживают только 5 главных фракций. Электрофорез тех же белков в полиакриламидном геле позволяет получить до 18 различных фракций. 
    В настоящее время электрофорез в полиакриламидном геле (ПААГ) в присутствии додецилсульфата натрия (ДСН) является общепринятым методом определения гомогенности белковых препаратов. Метод основан на свойстве заряженных частиц (молекул) перемещаться под действием электрического поля. Обычно скорость миграции зависит от трех параметров анализируемых белков: величины молекул, формы молекул и суммарного заряда. Поэтому предварительно белки денатурируют с тем, чтобы скорость миграции зависела только от молекулярной массы. Для этого анализируемую смесь обрабатывают додецилсульфа-том натрия [ДСН (SDS)] (C12H25OSO3Na). Под действием ДСН олигомерные белки диссоциируют на субъединицы и денатурируют. Развернутые полипептидные цепи связывают ДСН (примерно 0,4 г/г белка) и приобретают отрицательный заряд. Для полной денатурации в среду добавляют тиолы, которые расщепляют дисульфидные мостики.

    Электрофорез проводят в тонком слое полиакриламида. После завершения электрофореза, зоны белков выявляют c помощью красителя.
    ВОПОРОС № 3. Хроматография.
    Хроматография — метод разделения смесей веществ или частиц основанный на различиях в скоростях их перемещения в системе несмешивающихся и движущихся относительно друг друга фаз.

    • Колонка — содержит хроматографический сорбент, выполняет функцию разделения смеси на индивидуальные компоненты.

    • Элюент — подвижная фаза: газ, жидкость или (реже) сверхкритический флюид.

    • Неподвижная фаза — твердая фаза или жидкость, связанная на инертном носителе, в адсорбционной хроматографии — сорбент.

    • Хроматограмма — результат регистрирования зависимости концентрации компонентов на выходе из колонки от времени.

    • Детектор — устройство для регистрации концентрации компонентов смеси на выходе из колонки.

    • Хроматограф — прибор для проведения хроматографии.

    Ионообменная хроматография основана на электростатическом взаимодействии между ионами противоположного заряда. Главное условие при этом, чтобы ионы одного заряда были ковалентно фиксированы на инертном носителе. Такой ионообменник будет связывать ионы противоположного заряда. В качестве неподвижной фазы используют ионообменники - полимерные органические вещества, содержащие заряженные функциональные группы. При промывании ионообменника раствором с более высокой ионной силой или иным значением рН сорбированные ионы можно селективно перевести в раствор (элюировать). При разделении аминокислот методом ионообменной хроматографии в качестве неподвижной фазы используются гранулы синтетического полимера, несущие сульфогруппы (-SО3-). Для подготовки к работе ионообменник помещают в колонку и промывают Na+-содержащим буферным раствором с рН 2. При этом сульфогруппа (красный цвет) связывает ионы натрия. Если теперь нанести на колонку раствор аминокисло), то положительно заряженные аминокислоты вытеснят ионы натрия и будут сорбированы на ионите. Поскольку аминокислоты не несут заряда в изоэлектрической точке, их злюируют с колонки буфером с более высоким значением рН.

    Так же как и электрофорез, метод основан на разделении белков, различающихся суммарным зарядом при определённых значениях рН и ионной силы раствора. При пропускании раствора белков через хроматографическую колонку, заполненную твёрдым пористым заряженным материалом, часть белков задерживается на нём в результате электростатических взаимодействий.

    Аффинная хроматография, или хроматография по сродству

    Это наиболее специфичный метод выделения индивидуальных белков, основанный на избирательном взаимодействии белков с лигандами, прикреплёнными (иммобилизированными) к твёрдому носителю. В качестве лиганда может быть использован субстрат или кофермент, если выделяют какой-либо фермент, антигены для выделения антител и т.д. Через колонку, заполненную иммобилизованным лигандом, пропускают раствор, содержащий смесь белков. К лиганду присоединяется только белок, специфично взаимодействующий с ним; все остальные белки выходят с элюатом. Белок, адсорбированный на колонке, можно снять, промыв её раствором с изменённым значением рН или изменённой ионной силой. В некоторых случаях используют раствор детергента, разрывающий гидрофобные связи между белком и лигандом.

    Аффинная хроматография отличается высокой избирательностью и помогает очистить выделяемый белок в тысячи раз.

    Гель-проникающая хроматография (гель-фильтрация) позволяет разделять белки по величине и форме молекул. Разделение проводят в хроматографических колонках, заполненных сферическими частицами набухшего геля (размером 10-500 мкм) из полимерных материалов. Частицы геля проницаемы благодаря внутренним каналам, которые характеризуются определенным средним диаметром. Смесь белков вносят в колонку с гелем и элюируют буферным раствором. Белковые молекулы, не способные проникать в гранулы геля (помечены красным цветом), будут перемещаться с высокой скоростью. Средние (зеленого цвета) и небольшие белки (синего цвета) будут в той или иной степени удерживаться гранулами геля. На выходе колонки элюат собирают в виде отдельных фракций. Объем выхода того или иного белка зависит в основном от его молекулярной массы.
    ВОПРОС № 4. Методы количественного определения белка в растворе.

    Как при выделении и очистке белков, так и при проведении разнообразных биохимических исследований необходимо количественное определение содержания белка в исследуемой фракции, в выделенном или исследуемом образце. Кроме того, анализ содержания белков в биологических жидкостях (крови) имеет важное биомедицинское значение и используется в диагностических целях.

    Количественное определение белка проводится, как правило, с небольшим количеством материала и требует высокочувствительных методов детекции.

    Наиболее широко распространены колориметрические и спектрофотометрические методы количественного определения белка.

    БИУРЕТОВЫЙ МЕТОД

    Основан на образовании биуретового комплекса (имеет фиолетовый цвет) пептидных связей белков с двухвалентными ионами меди. В методе используют т. н. биуретовый реактив, состоящий из KOH, CuSO4 и цитрата натрия (или тартрата натрия). В образовавшемся комплексе медь связана с 4 азотами координационными связями, а с 2 кислородами — электростатическими. Полноценный комплекс образуется лишь с пептидами, состоящими более чем из 4 остатков. 

    Ход работы. Для построения калибровочного графика из стандартного раствора альбумина готовят растворы белка, содержащие 2, 4, 6, 8 и 10 мг альбумина в 1 мл. В каждую пробирку, содержащую 1 мл раствора белка соответствующего разведения добавляют 4 мл биуретового реактива, перемешивают и оставляют при комнатной температуре на 30 мин. Измеряют оптическую плотность раствора на ФЭК при 540 нм в 1 см кювете. Содержание белка в исследуемых растворах рассчитывают по калибровочному графику.

    Ныне мало используется в биохимической лабораторной практике (за исключением медицинских анализов на белок) из-за низкой чувствительности.

    К достоинствам метода стоит отнести его низкую чувствительность к посторонним веществам, невысокую погрешность. Простота.
    МЕТОД БЕНЕДИКТА

    Метод Бенедикта аналогичен биуретовому методу, однако позволяет определять белок в диапазоне концентраций от 0,1 до 2 мг в пробе.

    Бенедикта реактив - реактив, представляющий собой водный раствор сернокислой меди, лимоннокислого натрия (или калия) и углекислого натрия.

    К 0,2 мл раствора белка добавляют 3,5 мл раствора NаОН и 0,2 мл реактива Бенедикта. Смесь инкубируют 15 мин при комнатной температуре и спектрофотометрируют на длине волны 330 нм. Построение калибровочного графика проводят по стандартному раствору белка.

    Более чувствителен. Но и к примесям.

    МЕТОД ЛОУРИ

    Метод основан на образовании окрашенных продуктов ароматических аминокислот с реактивом Фолина в сочетании с биуретовой реакцией на пептидные связи. Метод характеризуется высокой чувствительностью и позволяет определять содержание белка в диапазоне концентраций от 10 до 100 мкг на пробу.

    Для построения калибровочного графика из стандартного раствора альбумина готовят растворы белка, содержащие 10, 20, 40, 60, 80 и 100 мкг альбумина в 1 мл. К 1 мл исследуемого раствора,

    содержащего 10 – 100 мкг белка, приливают 2,0 мл рабочего раствора (4), перемешивают и оставляют при комнатной температуре на 10 мин. Затем в пробирку с реакционной смесью добавляют 0,2 мл реактива Фолина – Чокальтеу, тщательно перемешивают и через 30 мин определяют оптическую плотность раствора при 750 нм. Содержание белка в исследуемых растворах рассчитывают по калибровочному графику. Увеличение адсорбции при 750 нм пропорционально концентрации белка. Метод очень чувствителен к наличию в растворе посторонних восстановителей (что затрудняет его использование при определении белка в неочищенных препаратах), чувствительность к белку — 10 — 100 мкг/мл.
    МЕТОД ПЕТЕРСОНА
    Принцип метода. Данный метод аналогичен методу Лоури, характеризуется высокой чувствительностью (10 – 100 мкг белка), позволяет эффективно определять белок в мембранных фракциях.

    Ход работы. Для построения калибровочного графика из стандартного раствора альбумина готовят растворы белка, содержащие 10, 20, 40, 60, 80 и 100 мкг альбумина в 1 мл. К 1 мл исследуемого раствора, содержащего от 10 до 100 мкг белка, приливают 1 мл реагента А (Реагент А: 1 часть СТС-реактива смешивают с 1 частью 0,8 моль/л раствора NaOH , после чего в полученную смесь доливают 2 части 5 % раствора додецилсульфата натрия, тщательно перемешивают), перемешивают и оставляют при комнатной температуре на 10 мин. Затем в пробирку с реакционной смесью добавляют 0,5 мл реактива В (Реагент В: 1 часть реактива Фолина – Чокальтеу смешивают с 5 частями дистиллированной воды), тщательно перемешивают и через 30 мин определяют оптическую плотность раствора при 670 нм. Содержание белка в исследуемых растворах рассчитывают по калибровочному графику.

    СПЕКТРОФОТОМЕТРИЧЕСКИЙ МЕТОД

    Метод основан на способности ароматических аминокислот (триптофана, тирозина и в меньшей степени фенилаланина) поглощать ультрафиолетовый свет при 280 нм. Поскольку белки отличаются по содержанию ароматических аминокислот, их поглощение ультрафиолетовой области спектра может сильно различаться. Измеряя величину оптической плотности при этой длине волны, определяют количество белка в растворе.

    Использование данного метода позволяет проводить определение белка быстро и не требует использования дополнительных реагентов.
    Имеются и другие методы определения азота, такие как метод Дюма, нейтронно-активационный. Принцип метода Дюма заключается в разложении органического соединения в атмосфере оксида углерода до газообразного состояния с последующим измерением объема азота (N2). В нейтронно-активационном методе атомы азота образца бомбардируются нейтронами в ядерном реакторе с получением изотопа 13N. Содержание белка рассчитывают по количеству гамма-лучей. 

      1   2   3   4   5   6   7   8


    написать администратору сайта