Вопросы к экзамену по патологической физиологии Общая патология Патологическая физиология как наука и ее место среди других дисциплин. Задачи и методы исследования патологической физиологии и ее значение в подготовке будущего врача
Скачать 1.32 Mb.
|
Медь /Cu/ Медь необходима для многих физиологических процессов: кроветворение, остеогенез, воспроизводительная функция, синтез меланина и др. Медьсодержащие ферменты и белки играют роль в окислительно-восстановительных процессах. Среди таких ферментов одно из центральных мест занимает цитохромоксидаза. Аминооксидазы, катализирующие превращение биогенных аминов, имеют все в своем составе медь. Известно, что Cu стимулирует созревание ретикулоцитов до эритроцитов, поэтому при недостатке Cu эритроцитопоэз доходит лишь до стадии ретикулоцитов. Нарушается синтез гемоглобина. Недостаточность Cu сопровождается также нарушением структуры и свойств соединительной ткани. У больных сахарным диабетом, ишемической болезнью сердца, с заболеваниями органов пищеварения содержание Cu в крови снижено, и наоборот, при лейкозах, неврозах и эпилепсии характерна гиперкупремия. Это говорит о том, что многие патологические процессы сопровождаются как недостатком, так и избытком Cu. Специфически изменяется обмен Cu при гепатолентикулярной дегенерации или болезни Вильсона-Коновалова. При этой болезни нарушен синтез церулоплазмина, который служит регулятором баланса Cu и обеспечивает выведение ее избытка из организма. Болезнь характеризуется высоким содержанием Cu в печени, головном мозге, коже и роговице, что приводит к поражению указанных структур. Потребность в Cu у взрослого человека 2-3 мг в сутки. До 85% от общего баланса ее выводится с желчью. Цинк /Zn/ Цинк входит в состав целого ряда ферментов: карбоангидраза, карбоксипептидаза, щелочная фосфатаза, алкогольдегидрогеназа и др. Удаление Zn лишает фермент специфичности. Zn наряду с другими металлами входит в состав ДНК и стабилизирует ее структуру. Установлено, что Zn учавствует в клеточном делении, способствует более быстрому заживлению ран. В раковых клетках Zn находится в более прочных связях с белком, чем в нормальных. Хорошо известно, что Zn имеет значение для нормальной секреции инсулина. Молекулы инсулина, связанные с Zn, стабильны. Недостаток цинка у животных приводит к задержке роста и нарушению в половой сфере- тестикулярной атрофии, нарушению сперматогенеза, эстрального цикла. Отмечены также поражения кожи и слизистых оболочек: тяжелые дерматиты, облысение, развитие гиперкератоза слизистой оболочки пищевода. Большая часть всего Zn крови (85%) находится в эритроцитах. При лейкозе концентрация цинка в лейкоцитах значительно понижена, что является постоянным и характерным признаком этого заболевания. В остром периоде инфаркта Zn в крови меньше, а при выздоровлении его уровень повышается. У человека иногда недостаточность Zn проявляется карликовостью. У этих больных наблюдается задержка роста и полового развития, гепатоспленомегалия. Кадмий /Cd/ Установлено, что Cd ингибирует ряд ферментов, является антагонистом Zn, вытесняя его из каких-либо соединений. Cd токсически действует на клетки семенников, нарушает их кровообращение, что ведет к стерильности. Введение солей кадмия беременным крысам приводило к полному разрушению плодовой части плаценты. Во всех случаях беременность прерывалась с рассасыванием плода или абортом. Есть данные по 28 городам США, где выявлена положительная корреляция между средней концентрацией Cd в атмосфере и смертностью от гипертонической болезни и атеросклероза. Zn снижает токсичность Cd, увеличивает его выделение из организма через почки, с желчью, через кишечник. Особенно богаты Cd и Zn устрицы. Cd в высоких концентрациях содержится в зародышах пшеницы. Cd не является жизненно необходимым микроэлементом и не установлено его специфическое биологическое значение. Ферментов, содержащих в своем составе Cd, еще не найдено. Кобальт /Со/ После открытия витамина В12, в структуре которого был найден Со, механизм стимулирующего влияния Со на эритропоэз стали объяснять участием Со в образовании этого витамина. Со влияет также на образование эритропоэтинов, усиливает ионизацию и резорбцию железа, способствует включению атома Fe в молекулу гемоглобина, ускоряет созревание эритроцитов и др. Гемопоэтическое его действие эффективно, если в организме имеются достаточные запасы Fe и Cu. Со способствует синтезу мышечных белков, принимает участие в углеводном обмене. Установлено гипогликемическое действие больших доз хлористого Со. Недостаточное поступление солей Со в организм приводит к неполному усвоению Са и др. Вместе с тем Со тормозит активность ферментов сукцинатдегидрогеназы, реакции синтеза тироксина. Содержание Со в крови несколько выше летом, что связано с употреблением в пищу свежих овощей и фруктов, богатых микроэлементами. Молибден /Мо/ Роль Мо в обмене веществ обусловлена включением его в состав некоторых ферментов: ксантиноксидазы, альдегидоксидазы и др. Установлено, что концентрация мочевой кислоты в сыворотке и активность ксантиноксидазы в тканях людей и животных, которые подвергаются действию высоких доз Мо, значительно превышают норму. Крайне высокая заболеваемость подагрой в некоторых регионах Армении среди населения связана с аномально высокими концентрациями Мо в почве и растениях. Толерантность животных к высоким дозам Мо неодинакова. У молодых кроликов синдром молибденоза характеризуется алопецией, дерматозом, анемией, деформацией передних конечностей. Недостаток Мо ведет к образованию у животных (овец) ксантиновых камней в почках. К наиболее богатым источникам Мо относятся бобовые, зерно, лиственные овощи, а также печень и почки. Йод /J/ Йод - важнейший микроэлемент. Роль его в организме связана с синтезом и обменом тиреоидных гормонов. Эти гормоны контролируют функционирование всех систем организма, рост и дифференцировку тканей, поглощение О₂, влияют на скорость метаболизма, теплообразование, жировой, углеводный, белковый и другие виды обмена веществ. Действие тиреоидных гормонов на клеточном и субклеточном уровнях связано непосредственно с влиянием их на обмен веществ и энергии в митохондриях. В организм человека 90% J поступает с пищей, причем основным источником его является растительная пища. Особенно богаты J морские водоросли. Известно, что J быстро всасывается в желудочно-кишечном тракте после приема его соединений натощак. Органический J сыворотки крови представлены в основном гормонами щитовидной железы. Отношение концентрации J в щитовидной железе к содержанию его в крови лежит в пределах 200-500. Величина задержки радиоактивного J в щитовидной железе старых животных (крыс) меньше, чем у молодых животных. Основным путем выведения являются почки. При гипертиреозе у больных выведение J снижается, а при гитотиреозе резко возрастает. J также выделяется со слюной, желудочным соком, желчью, потом и др. концентрация J в слюне и желудочном соке может в 40 раз превышать таковую в плазме крови. Недостаток J ведет к развитию эндемического зоба. Добавление натрия или калий-йодида к питьевой воде или поваренной соли способствует профилактике заболевания. В период аварии на Чернобыльской АЭС йод-131 явился источником переоблучения щитовидной железы, характерными последствиями нарушений которой являются угнетения обмена веществ, изменения деятельности сердечно-сосудистой системы, снижения иммунной защиты организма и изменения показателей периферической крови. Отдаленными последствиями поражения щитовидной железы могут быть стойкие нарушения ее функции, развитие доброкачественных и злокачественных опухолей, лейкозы. Однако влияния радиоактивных веществ на организм требуют специального рассмотрения. Фтор (F) Фтор входит в состав костей и зубной эмали. Повышения содержания F в питьевой воде (более 1 кг/л) влечет к гиперплазии зубной эмали. Флюорозу и поражениям зубов (крапчатая эмаль). Наблюдается разрыхление костей (остеопороз), так как при флюорозе происходит выделения кальция и фосфора из костей. Недостаток F в питьевой воде и пище приводит к развитию кариеса зубов. Установлено, что F тормозит биосинтез углеводов, необходимых для жизнедеятельности бактерий, способствующих развитию кариеса. Ацидозы. Алкалозы. Виды, причины, изменение показателей КОС. Способы коррекции. КОС представляет соотношения в организме кислых и основных ионов. Его характеризуют с помощью концентрации водородных ионов, а точнее, ее отрицательным десятичным логарифмом (показатель pH). Отклонения pH могут вызывать нарушения жизнедеятельности организма. Так смещение pH от нормальных величин (7.35-7.45) на 0.1 ед приводит к существенным нарушениям функции системы дыхания и кровообращения. Сдвиг pH на 0.3 единицы в кислую сторону вызывает развитие ацидотической, а на 0.4 смерть. В организме существуют механизмы регуляции КОС, препятствующие возможному изменению pH. Они подразделяют на механизмы БЫСТРОГО И ЗАМЕДЛЕННОГО действия. Первые включаются и проявляют эффект немедленно. Они представлены буферными системами крови, внутри- и внеклеточной жидкости. Буферные системы представляют собой ассоциацию слабой кислоты и сопряженного с ней сильного основания, выполняющих соответственно роль донора и акцептора ионов водорода. Основными буферными системами являются: бикарбонатный буфер белковый гемоглобиновый фосфатный Механизм действия буферных систем заключается в способности их компонентов вступать во взаимодействие с Н и ОН ионами сильно диссоциирующих веществ. В результате образуются слабо диссоциирующие вещества, что препятствует существенному сдвигу pH. Наибольшей буферной емкостью обладает бикарбонатный буфер. Это связано с возможностью регуляции его компонентов с помощью легких и почек. Особое место принадлежит гемоглобиновому буферу. Благодаря реакциям взаимодействия последнего в тканях и легких обеспечивается перенос и выведение СО2 во внешнюю среду. Тем самым предупреждается возможность избыточного накопления Н+ в результате гидратации СО2 согласно реакции: СО2 + Н2О ↔ Н2СО3 ↔ Н+ + НСО3- /1/ Роль механизмов замедленного действия в регуляции КОС выполняют легкие (несколько часов) и почки (несколько дней). Роль легких в поддержании КОС заключается в изменении активности в ответ на закисление или ощелачивание внутренней среды. Возможность изменения вентиляционной активности обусловлена наличием летучей угольной кислоты, концентрация которой нарушается при изменении КОС. Так, при ацидозах уравнение 1 сдвигается влево, что приводит к накоплению в организме углекислого газа. Последний же, как известно, является активатором дыхательного центра, что приводит к гипервентиляции. Вымывание из крови избытка СО2 приводит к повышению рН. При защелачивании внутренней среды компенсаторная реакция легких проявляется в гиповентиляции, что ведет к задержанию СО2 и накоплению Н+. Роль почек в поддержании КОС обеспечивается тремя основными механизмами: ацидогенезом, аммониогенезом и сбережением оснований. Дальнейшее выделение Н+ осуществляется за счет АММОНИОГЕНЕЗА. В результате дезаминирования аминокислот (глютамина, глицина, аланина) в эпителии почечных канальцев образуется аммиак, удаляемый с мочой в виде NH4CL. Ионы Na+, освобождаемые из двуосновного фосфата, хлорида аммония поступают в эпителии почечных канальцев взамен H+, где соединяются с ионами HCO3- в виде NaHCO3 всасываются в кровь. Процесс реабсорбции NaHCO3 (одного из компонентов бикарбонатной буферной системы) называется механизмом СБЕРЕЖЕНИЯ ОСНОВАНИЙ. Наряду с основными вышеперечисленными механизмами в почках осуществляется другой процесс: из сильной бензойной кислоты образуется слабая гиппуровая кислота. Почки способны в свободном виде выводить органические кислоты: лимонную, пировиноградную, молочную, ацетилуксусную, гидроксимасляную. В регуляции КОС наряду с легкими, почками играют существенную роль печень, ЖКТ и др. Показатели КОС 1.Одним из важнейших показателей КОС является показатель рН. рН арт.= 7.35-7.45 ед. рН вен.= 7.32-7.42 ед. рН внкл.среды = 6.9-7.4 ед. 2. PCO2 - парциальное давление углекислого газа. PCO2 артериальной крови колеблется в пределах 36-44 мм.рт.ст. PCO2 венозной крови 42-55 мм.рт.ст. Данный показатель изменяется при респираторных нарушениях, выступая при этом в качестве причины нарушения КОС. При метаболических сдвигах изменение данного показателя связанно с компенсаторными функциями легких. Так, возрастание PCO2 наблюдается при респираторных ацидозах и метаболических алкалозах, в то время, как уменьшение PCO2 имеет место при респираторных алкалозах и метаболических ацидозах. 3. SB /StandartBicarbonate, англ./ – стандартный бикарбонат - это HCO3- в плазме или крови при стандартных условиях (РСО2 = 40 мм.рт.ст., t = 380С, HbO2= 100%). В норме SB плазмы составляет 21-24 ммоль/л. Этот показатель характеризует влияние метаболических процессов на КОС. 4. AB / ActualBicarbonate, англ./ - истинный бикарбонат. Это концентрация HCO3- плазмы или крови при условиях ее нахождения в кровеносном русле. У здоровых людей AB=SB. Показатель AB отражает степень дыхательных и метаболических расстройств. Увеличение AB имеет место при респираторном ацидозе и метаболическом алкалозе, снижение – при респираторном алкалозе и метаболическом ацидозе. 5. BB /BufferBase/ - буферные основания – сумма концентраций всех буферных оснований (HCO3- + HPO42- + NaPt- + KHb- ), которые в норме в крови составляют 44-54 ммоль/л. Показатель BB отражает степень метаболических расстройств и почти не изменяется при респираторных нарушения КОС (смотри уравнение 1 и 2). H+ + NaPt = Na+ + HPt /2/ Так, при накоплении CO2 концентрация ионов HCO3- возрастает (уравнение 1), в то время как NaPt, согласно уравнению 2- снижается. Так как эти два компонента в основном составляют показатель ВВ, то их сумма при респираторных нарушениях практически не изменяется. Показатель ВВ также используется для составления КОС с электролитным балансом. 6. BE / BaseExcess/ - избыток оснований - представляет разницу между показателем ВВ исследуемой крови и нормой. Данный показатель характеризует смешение концентрации титруемых буферных анионов по отношению к стандартным условиям. BE = BB – NBB /3/ В норме BE колеблется в пределах 2.5 ммоль/л. В условиях патологии он может достигать 30 ммоль/л. Данный показатель является наилучшим для оценки метаболических нарушений КОС, так как наглядно отражает выраженность происходящих сдвигов. 7. – BE = BD - дефицит оснований, развивающихся при накоплении нелетучих кислот либо потере оснований (метаболический ацидоз). Исходя из уравнения /3/, BE ∞ BB Определения КОС осуществляется с помощью двух основных аналитических методов: эквилибрационного метода по Astrup, предполагающего использование криволинейной номограммы Зиггаарда-Андерсена. прямого определения PCO2 и рН с использованием линеаризованной номограммы с целью определения BB, SB, BE. В настоящее время существуют автоматизированные устройства, позволяюшие определить все показатели КОС без использования номограмм. Виды нарушений КОС По направленности изменения рН в кислую или основную сторону все нарушения КОС подразделяются соответственно на ацидозы и алкалозы. Кроме того, в соответствии с изменением концентрации летучей или нелетучих кислот в организме, они соответственно подразделяются на газовые и негазовые. Газовый (дыхательный или респираторный) ацидоз развивается при избытке организме угольной кислоты. Причинами могут быть недостаточность функции внешнего дыхания ( чаще всего гиповентиляция), либо избыток CO2 во вдыхаемом воздухе. При данном нарушении КОС повышается PCO2, следствием чего является увеличение показателя истинного бикарбоната. Показатели BB и BE, как правило, не изменяются, либо незначительно возрастают. Что касается электролитных изменений, то они проявляются в увеличении концентрации ионов Na+, Ka+, Ca2+, выходящих из костей и клеток взамен H+, снижение концентрации ионов Cl- , уходящих в эритроциты из клеток взамен HCO3-. Последнее является причиной гипергидротации эритроцитов, ведущих к увеличению их объема. Коррекция газового ацидоза сводится к устранению вызвавшей его причины, по необходимости - проведение трахеостомии, искусственной вентиляции легких. Вследствие гипоксии, развивающийся при газовом ацидозе, последний может переходить в метаболический ацидоз из-за накопления нелетучих кислот. Негазовый (метаболический) ацидоз является наиболее распространенной формой нарушения КОС. Он связан с увеличением концентрации нелетучих кислот. В зависимости от того, что явилось причиной изменения доноров и акцепторов H+, ацидоз подразделяется на абсолютный (положительный) и относительный (отрицательный). Абсолютный ацидоз развивается вследствие увеличения содержания нелетучих кислот. Причинами могут быть нарушения обмена веществ, ведущие к кетонемии (сахарный диабет, печеночная недостаточность, употребление большого количества алкоголя и салицилатов), лактатемии (кислородное голодание, физическая нагрузка, влияние большого количества гл, фруктозы, галактозы, сорбита). Причинами могут быть также повышенный распад белка, сопровождающийся увеличением содержания фосфорной и серной кислот, почечная недостаточность. Абсолютный ацидоз может развиваться при чрезмерном введении подкисляющих препаратов (NH4CL, аргинин- HCL, лизин-HCL, и др.). Как указывалось выше, причинами метаболических нарушений могут быть изменения в электролитном балансе. Так, переливание одного литра изотонического раствора NaCL проводит к дефициту буферных оснований порядка 3-4 ммоль/л. Потеря с мочой избытка Na+ при недостатке альдостерона (при острой или хронической надпочечной недостаточности), сопровождающаяся избыточным накоплением H+?, также является одной из причин абсолютного ацидоза. Причинами относительного негазового ацидоза является потеря щелочных компонентов (при фистулах желчевыводящего протоков, протоков поджелудочной железы, диарее, пероральном применении больших количеств хлористого кальция, ведущих к потере бикорбонатов в виде нерастворимых солей, при разнообразных поражениях проксимальных почечных канальцев, где происходит реабсорбция бикарбонатов). При негазовом ацидозе, вследствие избыточного содержание водородных ионов, показатель рН уменьшается. Участие анионов буферных систем в компенсации избытка H+ приводит к уменьшению показателей SB, BB, BE. Причиной снижения SB является также уменьшения PCO2 с которым он находится в прямопропорциональной зависимости. Уменьшение PCO2 является следствием гипервентиляции, выступающей в качестве компенсаторной реакции негазового ацидоза. Электролитные изменения проявляются в виде гипернатри-кали- и кальциемии, вследствие выхода этих ионов из клеток, костной ткани взамен H+, а также диссоциации белков как оснований в кислой среде (смотри уравнение 2). Снижение концентрации HCO3- в плазме сопровождается выходом ионов хлора из эритроцитов в плазму. Это приводит к дегидратации эритроцитов и к уменьшении их объема. Коррекция негазового относительного ацидоза осуществляется с помощью введения 10% раствора цитрата натрия через рот (в легких случаях), либо NaHCO3 (6-12 г/сутки)- в тяжелых случаях. Абсолютный негазовый ацидоз компенсируется с помощью трисбуфера (тризамин, трис, THAM), 1/6 н раствора лактата натрия (12-20 мл/кг). При гипоксии показана оксигенотерапия. |