Закон кулона и область его применения. Электростатика раздел, изучающий статические (неподвижные) заряды и связанные с ними электрические поля
Скачать 1.66 Mb.
|
16) Работа и мощность токаПри протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = I Δt. Электрическое поле на выделенном участке совершает работу
где U = Δφ12 – напряжение. Эту работу называют работой электрического тока. Если обе части формулы
выражающей закон Ома для однородного участка цепи с сопротивлением R, умножить на IΔt, то получится соотношение
Это соотношение выражает закон сохранения энергии для однородного участка цепи. Работа ΔA электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло ΔQ, выделяющееся на проводнике.
Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем и Э. Ленцем и носит название закона Джоуля–Ленца (количество выделившейся в проводнике теплоты пропорционально его сопротивлению , квадрату силы тока и времени ). Мощность электрического тока равна отношению работы тока ΔA к интервалу времени Δt, за которое эта работа была совершена:
Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт). Соотношение (1) выражает закон Джоуля-Ленца в интегральной форме. Введем плотность тепловой мощности , равную энергии выделенной за единицу время прохождения тока в каждой единице объема проводника где S - поперечное сечение проводника, - его длина. Используя (1.13) и соотношение , получим : Но - плотность тока, а , тогда с учетом закона Ома в дифференциальной форме , окончательно получаем
Формула (17.14) выражает закон Джоуля-Ленца в дифференциальной форме: объемная плотность тепловой мощности тока в проводнике равна произведению его удельной электрической проводимости на квадрат напряженности электрического поля. 17) Магнитное поле в вакуумеВзаимодействие электрических токов между собой осуществляется через поле, называемое магнитным. В опыте Эрстеда ( первый опыт с магнитным полем ) проволока, по которой шел ток, была натянута над магнитной стрелкой, вращающейся на игле. При включении тока стрелка устанавливалась перпендикулярно к проволоке. Изменение направления тока взывало поворот стрелки в противоположную сторону. Из опыта Эрстеда следует, что магнитное поле имеет направленный характер и должно характеризоваться векторной величиной. Магнитное поле в отличии от электрического не оказывает действия на покоящийся заряд. Сила возникает лишь тогда, когда заряд движется. Магнитное поле порождается движущимися зарядами. Магнитная индукция — это векторная физическая величина, являющаяся силовой характеристикой магнитного поля, численно равная максимальному вращающему моменту, действующему на контур с единичным магнитным моментом, и направленная вдоль положительной нормали к контуру. Модуль магнитной индукции равен Единицей магнитной индукции в СИ является тесла (Тл). 1 Тл = Н·м/(А·м2) = Н/(А·м) . 1 Тл — магнитная индукция такого однородного поля, в котором на контур с магнитным моментом 1 А·м2 действует вращающий момент 1 Н·м. Магнитная индукция B⃗ полностью характеризует магнитное поле. В каждой точке может быть найден ее модуль и направление. Поле, в каждой точке которого модуль и направление магнитной индукции одинаковы ( B⃗ =const) , называется однородным магнитным полем. Если магнитное поле образовано системой n проводников с токами, то, имеет место принцип суперпозиции магнитных полей: магнитная индукция поля системы токов равна геометрической сумме магнитных индукцией полей каждого из токов в отдельности: B⃗ =B⃗ 1+B⃗ 2+…+B⃗ n=∑ni=1B⃗ i. Индукция в вакууме или воздухе равна , где . |