Главная страница

ответы по физике. Ответы по физике. 1. Понятие материальной точки и абсолютно твёрдого тела. Материальная точка


Скачать 1 Mb.
Название1. Понятие материальной точки и абсолютно твёрдого тела. Материальная точка
Анкорответы по физике
Дата26.01.2022
Размер1 Mb.
Формат файлаdocx
Имя файлаОтветы по физике.docx
ТипДокументы
#343098
страница2 из 14
1   2   3   4   5   6   7   8   9   ...   14

Первый закон Кеплера (закон эллипсов)




Первый закон Кеплера.

Каждая планетаСолнечной системыобращается поэллипсу, в одном из фокусов которого находится Солнце. Форма эллипса и степень его сходства с окружностью характеризуется отношением  , где   — расстояние от центра эллипса до его фокуса (половина межфокусного расстояния),   — большая полуось. Величина   называется эксцентриситетом эллипса. При  , и, следовательно,   эллипс превращается в окружность.

Второй закон Кеплера (закон площадей)



Второй закон Кеплера.

Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади.

Применительно к нашей Солнечной системе, с этим законом связаны два понятия: перигелий — ближайшая к Солнцу точка орбиты, и афелий — наиболее удалённая точка орбиты. Таким образом, из второго закона Кеплера следует, что планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии.

Каждый год в начале января Земля, проходя через перигелий, движется быстрее, поэтому видимое перемещение Солнца по эклиптике к востоку также происходит быстрее, чем в среднем за год. В начале июля Земля, проходя афелий, движется медленнее, поэтому и перемещение Солнца по эклиптике замедляется. Закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.

Третий закон Кеплера (гармонический закон)


Квадраты периодов обращения планет вокруг Солнца относятся, как кубыбольших полуосейорбит планет. Справедливо не только для планет, но и для их спутников.

, где   и   — периоды обращения двух планет вокруг Солнца, а   и   — длины больших полуосей их орбит.

Ньютон установил, что гравитационное притяжение планеты определенной массы зависит только от расстояния до неё, а не от других свойств, таких, как состав или температура. Он показал также, что третий закон Кеплера не совсем точен — в действительности в него входит и масса планеты:  , где   — масса Солнца, а   и   — массы планет.

Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды.

K= = const – постоянная Кеплера.

Классическая теория тяготения Ньютона (Закон всемирного тяготения Ньютона) — закон, описывающий гравитационное взаимодействие в рамках классической механики. Этот закон был открыт Ньютоном около 1666 года. Он гласит, что сила   гравитационного притяжения между двумя материальными точками массы   и  , разделёнными расстоянием  , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними — то есть:



Здесь   — гравитационная постоянная, равная 6,67384(80) * 10-11 м³/(кг с²).

12. Понятие силы тяжести и веса тела, ускорение свободного падения, его зависимость от высоты над уровнем моря.

Сила тяжести — сила, действующая на любое материальное тело, находящееся вблизи поверхности Земли или другого астрономического тела.

По определению, сила тяжести на поверхности планеты складывается из гравитационного притяжения планеты и центробежной силы инерции, вызванной суточным вращением планеты.

Ускорение, сообщаемое телу силой тяжести, называется ускорением свободного падения.

Вес — сила воздействия тела на опору (или подвес или другой вид крепления), препятствующую падению, возникающая в поле сил тяжести. (В случае нескольких опор под весом понимается суммарная сила, действующая на все опоры; впрочем, для жидких и газообразных опор в случае погружения тела в них часто делается исключение, т. е. тогда силы воздействия тела на них исключают из веса и включают в силу Архимеда).

Единица измерения веса в Международной системе единиц (СИ) — ньютон.

Вес P тела, покоящегося в инерциальной системе отсчёта  , совпадает с силой тяжести, действующей на тело, и пропорционален массе   и ускорению свободного падения   в данной точке:

Значение веса (при неизменной массе тела) пропорционально ускорению свободного падения, которое зависит от высоты над земной поверхностью (или поверхностью другой планеты, если тело находится вблизи нее, а не Земли, и массы и размеров этой планеты), и, ввиду несферичности Земли, а также ввиду ее вращения (см. ниже), от географических координат точки измерения. Другим фактором, влияющим на ускорение свободного падения и, соответственно, вес тела, являются гравитационные аномалии, обусловленные особенностями строения земной поверхности и недр в окрестностях точки измерения.

При движении системы тело — опора (или подвес) относительно инерциальной системы отсчёта c ускорением   вес перестаёт совпадать с силой тяжести:



В результате суточного вращения Земли существует широтное уменьшение веса: на экваторе примерно на 0,3 % меньше, чем на полюсах.

Вес можно измерять с помощью пружинных весов, которые могут служить и для косвенного измерения массы, если их соответствующим образом проградуировать; рычажные весы в такой градуировке не нуждаются, так как в этом случае сравниваются массы, на которые действует одинаковое ускорение свободного падения или сумма ускорений в неинерциальных системах отсчёта. При взвешивании с помощью технических пружинных весов вариациями ускорения свободного падения обычно пренебрегают, так как влияние этих вариаций обычно меньше практически необходимой точности взвешивания.

На вес тела в жидкой или газообразной среде влияет также сила Архимеда, таким образом, вес тела, погружённого в среду, уменьшается на вес вытесненного объёма среды; в случае, если плотность тела меньше плотности среды, вес становится отрицательным (то есть на тело действует выталкивающая сила). Сила Архимеда может оказать влияние и на взвешивание с помощью рычажных весов, если сравниваются тела с различной плотностью.

Состояние отсутствия веса (невесомость) наступает при удалении тела от притягивающего объекта, либо когда тело находится в свободном падении, то есть  .

Ускорениесвободного падения (ускорение силы тяжести) — ускорение, придаваемое телу силой тяжести, при исключении из рассмотрения других сил. В соответствии с уравнением движения тел в неинерциальных системах отсчёта ускорение свободного падения численно равно силе тяжести, воздействующей на объект единичной массы.

Ускорение свободного падения на поверхности Земли g (обычно произносится как «Же») варьируется от 9,780 м/с² на экваторе до 9,832 м/с² на полюсах. Стандартное («нормальное») значение, принятое при построении систем единиц, составляет g = 9,80665 м/с². Стандартное значение g было определено как «среднее» в каком-то смысле на всей Земле, оно примерно равно ускорению свободного падения на широте 45,5° на уровне моря. В приблизительных расчётах его обычно принимают равным 9,81; 9,8 или 10 м/с².

Гравитационное ускорение


В соответствии с законом всемирного тяготения, значение гравитационного ускорения на поверхности Земли или другой планеты можно связать с массой планеты M следующим соотношением:

,

где G — гравитационная постоянная (6,6742·10−11 м³с−2кг−1), а r — радиус планеты. Это соотношение справедливо в предположении, что планета является однородным шаром. Приведённое соотношение позволяет определить массу любой планеты, включая Землю, зная её радиус и гравитационное ускорение на её поверхности. Исторически масса Земли была впервые определена Генри Кавендишем, который провёл первые измерения гравитационной постоянной.

Гравитационное ускорение на высоте h над поверхностью Земли (или другой планеты) можно вычислить по формуле:

, где M - масса планеты.

Гравитационное ускорение на различной высотеhнад уровнем моря

h, км

g, м/с2

h, км

g, м/с2

0

9,8066

20

9,7452

1

9,8036

50

9,6542

2

9,8005

80

9,5644

3

9,7974

100

9,505

4

9,7943

120

9,447

5

9,7912

500

8,45

6

9,7882

1000

7,36

8

9,7820

10 000

1,50

10

9,7759

50 000

0,125

15

9,7605

400 000

0,0025

13. Гравитационная масса, пропорциональность гравитационной и инертной масс механического тела.

  • Пассивнаягравитационнаямасса показывает, с какой силой тело взаимодействует с внешними гравитационными полями — фактически эта масса положена в основу измерения массы взвешиванием в современной метрологии.

  • Активная гравитационная масса показывает, какое гравитационное поле создаёт само это тело — гравитационные массы фигурируют в законе всемирного тяготения.

  • Инертная масса характеризует инертность тел и фигурирует в одной из формулировок второго закона Ньютона. Если произвольная сила в инерциальной системе отсчёта одинаково ускоряет разные исходно неподвижные тела, этим телам приписывают одинаковую инертную массу.

Гравитационная масса — характеристика тел в классической механике, являющаяся мерой их гравитационного взаимодействия. Отличается по определению от инертной массы, которая определяет динамические свойства тел.

Как установлено экспериментально, эти две массы пропорциональны друг другу. Не было обнаружено никаких отклонений от этого закона, поэтому новых единиц измерения для инерционной массы не вводят (используют единицы измерения гравитационной массы) и коэффициент пропорциональности считают равным единице, что позволяет говорить и о равенстве инертной и гравитационной масс.

Можно сказать, что первая проверка пропорциональности двух видов массы была выполнена Галилео Галилеем, который открыл универсальность свободного падения. Согласно опытам Галилея по наблюдению свободного падения тел, все тела, независимо от их массы и материала, падают с одинаковым ускорением свободного падения. Сейчас эти опыты можно трактовать так: увеличение силы, действующей на более массивное тело со стороны гравитационного поля Земли, полностью компенсируется увеличением его инертных свойств.

На равенство инертной и гравитационной масс обратил внимание ещё Ньютон, он же впервые доказал, что они отличаются не более чем на 0,1 % (иначе говоря, равны с точностью до 10−3). На сегодняшний день это равенство экспериментально проверено с очень высокой степенью точности (чувствительность к относительной разности инертной и гравитационной масс в лучшем эксперименте на 2009 год равна (0,3±1,8)·10−13).

14. Принцип эквивалентности сил инерции и тяготения. Определение значения гравитационной постоянной с помощью крутильных весов (Г. Кавендиш).

Принцип эквивалентности сил гравитации и инерции — эвристический принцип, использованный Альбертом Эйнштейном при выводе общей теории относительности. Один из вариантов его изложения: «Силы гравитационного взаимодействия пропорциональны гравитационной массе тела, силы инерции же пропорциональны инертной массе тела. Если инертная и гравитационная массы равны, то невозможно отличить, какая сила действует на данное достаточно малое тело — гравитационная или сила инерции

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения, однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века. Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809), по крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено. В1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов, изобретённых Джоном Мичеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли. Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли. Точность измеренного значения G со времён Кавендиша увеличилась, но и его результат был уже достаточно близок к современному.

В 2000 г. было получено значение гравитационной постоянной   см3 г-1 c-2, с погрешностью 0,0014%.

Последнее значение гравитационной постоянной было получено группой ученых в 2013, работавших под эгидой Международного Бюро Мер и Весов, и оно составляет   см3 г-1 c-2. В будущем, если опытным путём будет установлено более точное значение гравитационной постоянной, то оно может быть пересмотрено.

Значение этой постоянной известно гораздо менее точно, чем у всех других фундаментальных физических постоянных, и результаты экспериментов по его уточнению продолжают различаться. В то же время известно, что проблемы не связаны с изменением самой постоянной от места к месту и во времени — неизменность гравитационной постоянной проверена с точностью до  , но вызваны экспериментальными трудностями измерения малых сил с учётом большого числа внешних факторов.

По астрономическим данным постоянная G практически не изменялась за последние сотни миллионов лет, ее относительное изменение не превышает 10−11 — 10−12 в год.

15. Силы инерции при поступательном движении системы отсчёта.

Неинерциальные системы отсчета. Силы инерции


Как известно, законы Ньютона выполняются только в инерциальных системах отсчета. Системы отсчета, которые движутся относительно инерциальной системы с ускорением, называются 
неинерциальными. В неинерциальных системах законы Ньютона, вообще говоря, уже применять нельзя. Однако законы динамики можно применять и для них, если кроме сил, которые обусловлены воздействием тел друг на друга, ввести в рассмотрение понятие силы особого рода - так называемую силу инерции

При учете сил инерции второй закон Ньютона будет справедлив для любой системы отсчета: произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (учитывая и силы инерции). При этом силы инерции 
Fin должны быть такими, чтобы вместе с силами F, обусловленными воздействием тел друг на друга, они сообщали телу ускорение а', каким оно обладает в неинерциальных системах отсчета, т. е. 
 (1) 
Так как 
F=ma (a - ускорение тела в инерциальной системе отсчета), то 
 
Силы инерции обусловлены ускоренным движением системы отсчета относительно измеряемой системы, поэтому в общем случае следует учитывать следующие случаи возникновения этих сил: 1) силы инерции при ускоренном поступательном движении системы отсчета; 2) силы инерции, которые действуют на тело, покоящееся во вращающейся системе отсчета; 3) силы инерции, которые действуют на тело, движущееся во вращающейся системе отсчета. 

1. 
Силы инерции при ускоренном поступательном движении системы отсчета. На тележке к штативу на нити подвешен шарик массой m (рис. 1). Пока тележка покоится или движется прямолинейно и равномерно, нить, которая удерживает шарик, занимает вертикальное положение и сила тяжести Р уравновешивается силой реакции (натяжения) нити Т.



Если тележку привести в поступательное движение с ускорением 
а0, то нить будет отклоняться от вертикали в сторону, обратную движению, до такого угла α, пока результирующая сила F=P+T не даст ускорение шарика, равное а0. Значит, результирующая сила F направлена в сторону ускорения тележки а0 и для установившегося движения шарика (теперь шарик движется вместе с тележкой с ускорением а0) равна F=mgtgα=ma0, откуда 
 
т. е. угол отклонения нити от вертикали тем больше, чем больше ускорение тележки. 
В системе отсчета, которая связана с ускоренно движущейся тележкой, шарик покоится, что возможно, если сила 
F уравновешивается равной и противоположно направленной ей силой Fin, которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. Таким образом, 
 (2) 
Проявление сил инерции при поступательном движении мы можем видеть в повседневных явлениях. Если поезд набирает скорость, то пассажир, сидящий при этом по ходу поезда, прижимается к спинке сиденья под действием силы инерции. Наоборот, при торможении поезда пассажир отклоняется от спинки сиденья, т.к. сила инерции направлена в противоположную сторону. Особенно силы инерции заметны при внезапном торможении поезда. Эти силы проявляются в перегрузках, возникающие при запуске и торможении космических кораблей.


16. Центробежная сила инерции. Сила Кориолиса.

Силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета. Пусть диск равномерно вращается с угловой скоростью ω (ω=const) вокруг перпендикулярной ему оси, которая проходит через его центр. На диске установлены маятники, на разных расстояниях от оси вращения и на нитях висят шарики массой m. Когда диск начнет вращаться, шарики отклоняются от вертикали на некоторый угол (рис. 2). 


Рис.2

В инерциальной системе отсчета, которая связана, например, с помещением, где установлен диск, происходит равномерное вращение шарика по окружности радиусом R (расстояние от центра вращающегося шарика до оси вращения). Значит, на него действует сила, равная F=mω2R и которая направлена перпендикулярно оси вращения диска. Она является равнодействующей силы тяжести Р и силы реакции (натяжения) нити ТF=P+T. Когда движение шарика установится, то F=mgtgα=mω2R, откуда 
 
т. е. углы отклонения нитей маятников будут тем больше, чем больше угловая скорость вращения ω и чем больше расстояние R от центра шарика до оси вращения диска;. 
Относительно системы отсчета, которая связана с вращающимся диском, шарик покоится, что возможно, если сила F уравновешивается равной и противоположно направленной ей силой Fс, являющаяся ничем иным, как силой инерции, так как никакие другие силы на шарик не действуют. Сила Fc, называемая центробежной силой инерции, направлена по горизонтали от оси вращения диска и равна 
(3) 
На практике действие центробежных сил инерции испытывают, например, пассажиры в движущемся автобусе на поворотах, летчики при выполнении фигур высшего пилотажа; центробежные силы инерции используются во всех центробежных механизмах: насосах, сепараторах и т. д., где они достигают очень больших значений. При проектировании быстро вращающихся деталей машин (винтов самолетов, роторов и т. д.) используются специальные механизмы для уравновешивания центробежных сил инерции. 
Из формулы (3) следует, что центробежная сила инерции, которая действует на тела во вращающихся системах отсчета и которая направлена в сторону радиуса от оси вращения, зависит от угловой скорости вращения ω системы отсчета и радиуса R, но при этом не зависит от скорости тела относительно вращающихся систем отсчета. Значит, центробежная сила инерции действует во вращающихся системах отсчета на все тела, которые удалены от оси вращения на конечное расстояние, при этом не имеет значения, покоятся ли они в этой системе отсчета (как мы предполагали до сих пор) или движутся относительно нее с некоторой скоростью.

Сила Кориолиса — одна из сил инерции, существующая в неинерциальной системе отсчёта из-за вращения и законов инерции, проявляющаяся при движении в направлении под углом к оси вращения.

Причина появления силы Кориолиса — в кориолисовом (поворотном) ускорении. В инерциальных системах отсчёта действует закон инерции, то есть, каждое тело стремится двигаться по прямой и с постоянной скоростью. Если рассмотреть движение тела, равномерное вдоль некоторого вращающегося радиуса и направленное от центра, то станет ясно, что чтобы оно осуществилось, требуется придавать телу ускорение, так как чем дальше от центра, тем должна быть больше касательная скорость вращения. Это значит, что с точки зрения вращающейся системы отсчёта, некая сила будет пытаться сместить тело с радиуса.

Если вращение происходит по часовой стрелке, то двигающееся от центра вращения тело будет стремиться сойти с радиуса влево. Если вращение происходит против часовой стрелки — то вправо.
1   2   3   4   5   6   7   8   9   ...   14


написать администратору сайта