1 История, основные понятия 8. Диссертация на соискание ученой степени кандидата медицинских наук Научные руководители д м. н., профессор Л. В. Чистова д м. н., профессор М. И. Баканов
Скачать 0.51 Mb.
|
Глава I.Болезни накопления гликогена (обзор литературы)1.1. История, основные понятия. Гликогеновая болезнь - общее название наследственных болезней углеводного обмена, обусловленных недостаточностью или дефектами ферментов, участвующих в синтезе и расщеплении гликогена. В результате заболевания в печени накапливается избыточное количество гликогена и развивается гипогликемия. Заболевание чаще всего встречается в регионах, где приняты близкородственные браки. (12) Клинически одна из форм гликогеноза впервые была описана французским педиатром C.Lereboullet (1910), но его исчерпывающую патологоанатомию представил E.Gierke (1929), подчеркнув основную патоморфологическую особенность – чрезмерное накопление гликогена. (14) В дальнейшем подобное заболевание стало известно как болезнь Гирке, а сам автор назвал ее гликогенозом.(15) В 1932 году Pompe сообщил о больном ребёнке, у которого при посмертном исследовании было обнаружено большое количество гликогена в сердечной мышце. Болезнь получила впоследствии название болезни Помпе. Важные исследования по изучению патогенеза гликогеновой болезни были осуществлены G. Cori (1952), Forbes (1953) Ilingworth, Andersen (1956), Hers (1959), показавших ферментативную недостаточность процессов гликогенолиза.(34) Раскрытие энзимного патогенеза гликогенозов обусловило клиническое разграничение и более точную нозологическую характеристику этих заболеваний, способствовало правильному генетическому интерпретированию, а также углублённому изучению структуры и физиологии гликогена. В последующие годы было сообщено о гликогеновой болезни, вызванной отсутствием фосфоглюкомутазы (Thomson 1963), фосфофруктокиназы (Tarui 1965), фосфорилазы а и киназы фосфорилазы «в» (Hug 1966), протеинкиназы киназы фосфорилазы «в» (Hug 1970). В 1963 году Lewis и соавторы впервые описали случаи полного отсутствия гликогенсинтетазы в печени детей из одной семьи.(40) Имеются описания случаев гликогенозов, когда при явных клинических проявлениях заболевания не удавалось выявить недостаточность активности ферментов, участвующих в обмене гликогена.(34) Известны публикации, когда при одной форме гликогеноза существует недостаточность нескольких ферментов, участвующих в обмене гликогена. Распространённость Исследования последних лет показали, что гликогеноз является менее редким заболеванием, чем предполагалось ранее.(39) По данным Huijing на 1975год, распространённость заболевания составляет 1: 40000 населения. В различных странах колебания различны, так, в Израиле оно равно 1: 49000, в Щвеции 1: 57000, в Норвегии 1: 68000, в ФРГ 1: 113000 (Schaub , Beverl).(1) В 2001 году частота ГБ болезни составила 1: 20000 населения.(141) Колебания в распространённости ГБ наблюдаются в различных районах одной и той же страны. Mое Y. (2000) систематизировал данные о распространённости различных типов ГБ. В Нидерландах, Норвегии, Израиле наиболее распространён III тип гликогеноза. Этот же тип чаще наблюдается во Франции. В ФРГ III тип наблюдался сравнительно редко. В Швеции этот тип встречается реже других, самым распространённым является здесь I тип. В США наиболее частым оказался IX тип ГБ. В Бельгии из 316 случаев гликогеноза у 124 больных был выявлен гликогеноз VI типа, у 63-III типа, у 47- II тип. В Тайланде (2000) самым распространённым является II тип. В России по данным Попович Ю.Г. на 1988г, среди 49 детей с ГБ, наблюдавшихся в научно-исследовательском институте педиатрии АМН СССР, у 18,4% установлен I тип болезни, у 38,8% III тип, у 40,8% был установлен VI - IX тип ГБ, у 2% тип не был идентифицирован. Гликоген – высокомолекулярный полисахарид, являющийся основным источником энергии и резервом углеводов, содержится во всех клетках человека и животных.(19) В норме гликоген составляет до 4% влажной массы печени, в мышцах на его долю приходится до 2% . В организме, в результате расщепления полисахаридов и дисахаридов, образуется три моносахарида: глюкоза, фруктоза, галактоза, которые всасываются в пищеварительном тракте.(15) Глюкоза может быть депонирована в виде гликогена в двух основных источниках: печени и скелетных мышцах. Мышечные клетки, подобно клеткам печени, так же могут превращать глюкозу в резервный гликоген, но гликоген мышц служит только «местным» запасом: он является готовым источником топлива для немедленного обеспечения мышц энергией, расходуется при мышечной работе и не может быть использован для регулирования уровня глюкозы в крови.(18) В печени гликоген расщепляется, обеспечивая бесперебойное снабжение глюкозой эритроциты, мозг, сердечную мышцу. Глюкоза поступает в организм либо с потребляемой пищей, либо посредством гликонеогенеза: образуется путём биохимических реакций из лактата, глицерина и глюкопластичных аминокислот. Печень может содержать достаточный запас гликогена для снабжения крови глюкозой в течение 12- 24 часов; после этого времени, для поддержания гликемии печень должна использовать другие вещества, главным образом - аминокислоты (глицин, аланин, серин, треонин, валин, пролин, глютаминовую кислоту и оксипролин). Изучение роли печени в углеводном обмене и открытие гликогена в 1897 году принадлежит французскому физиологу Клоду Бернару.(15) Он определил разницу в концентрации глюкозы крови: уровень гликемии крови, притекающей к печени, оказался гораздо выше, чем оттекающей. ^ 1.2.Регуляция обмена гликогена в печени Расщепление и синтез гликогена находятся под контролем гормонов и ионов металлов, воздействующих на ключевые ферменты обмена гликогена. Координация обмена гликогена должна осуществляться таким образом, чтобы обеспечивался либо синтез, либо его деградация. Фосфорилирование соответствует механизму оборота глюкозы в организме, обеспечивая и синтез, и расщепление. При немедленной потребности в глюкозе -клетки поджелудочной железы секретируют глюкагон, который связывается с печёночными клетками и стимулирует продукцию ц АМФ под воздействием аденилатциклазы, а это, в свою очередь, активирует протеинкиназу. Протеинкиназа фосфорилирует киназу гликогенфосфорилазы, переводя её в активную форму, но в то же время превращает гликогенсинтетазу в неактивную форму.(31) В результате последовательной деградации гликогена глюкоза поступает в кровь. В то же время печень, может синтезировать гликоген и из молочной кислоты. Таким образом, распад гликогена в печени происходит как гидролитически, так и преимущественно фосфоролитически. Синтез и распад гликогена - обратимые реакции, биологическая роль которых заключается в создании резерва глюкозы или освобождения её в соответствии с потребностями организма. Соотношение между синтезом и распадом гликогена регулируется нейрогуморальным путём при участии желёз внутренней секреции. Инсулин, АКТГ, ГКС увеличивают содержание гликогена в печени, адреналин, глюкагон, катехоламины, соматотропный гормон и тироксин стимулируют его распад.(11) Кроме этого существует и негормональная регуляция глюконеогенеза одно и двух валентными ионами металлов: К+, Ca+, Мg+, в значительной степени активируют гликогенсинтетазу, фосфорилазу и киназу фосфорилазы «в». (19,20) Гликогенозы обусловлены метаболическими нарушениями, которые приводят к аномальному накоплению или изменению структуры гликогена.(12) Их подразделяют на типы в соответствии с выявленным ферментным дефектом и на основе особенностей клинической картины. Гликогенозы ассоциированы более чем с 15 различными дефектами ферментов. По локализации энзимного дефекта могут быть клинически разделены на 3 основные формы гликогеноза: с поражением печени; с поражением мышц; на генерализованную форму – с сочетанным поражением печени, сердечной мышцы и других паренхиматозных органов. Классификация, основанная на этих критерия, представлена в табл. №1. Общими клиническими симптомами заболевания являются: дебют болезни в грудном или раннем детском возрасте, отсутствие роста, значительная гепатомегалия, гипогликемия, проявляющаяся рвотой, судорогами, потерей сознания, резкой потливостью, слабостью. Значительное падение сахара крови может привести к проявлению так называемого симптома внезапной смерти или «смерти в колыбели».(17) Гликогеноз I тип (Гепаторенальный гликогеноз, болезнь Gierke) Недостаточность глюкозо-6-фосфатазы приводит к блокированию основного пути разложения гликогена и накоплению его в печени, почках, кишечнике. Структура гликогена нормальная. Патофизиология. Гипогликемия при голодании обусловлена отсутствием в печени глюкозо-6-фосфатазной активности. Этот фермент играет главную роль в регулировании уровня гликемии. Его активность особенно выражена у детей грудного возраста. Активирование печёночной фосфорилазы адреналином и гликогеном предотвращает колебание уровня глюкозы крови при отсутствии глюкозо-6-фосфатазы. Во время голодания и при отсутствии возможности образования свободной глюкозы при распаде гликогена образуется много молочной кислоты.(39) Увеличение концентрации молочной кислоты, активирующей гликогенсинтетазу, приводит к увеличению запасов гликогена печени. В качестве субстрата при синтезе гликогена может использоваться молочная кислота. У больных гликогенозом I типа содержание гликогена в печени возрастает до 14-17% от массы сырой ткани. Низкое содержание глюкозы в крови больных гликогенозом I типа вызывает усиленную мобилизацию жирных кислот в периферической жировой ткани и увеличивает синтез предшественников жиров.(18, 20) При этом в печени накапливается большое количество жирных кислот, намного превышающее способность печени окислять эти соединения, что вызывает накопление в гепатоцитах липидов, жирных кислот, вследствие чего возникает гиперлипидемия, в крови появляется пировиноградная кислота, возрастает содержание холестерина. Излишек жирных кислот окисляется не полностью и влечёт за собой образование кетоновых тел (ацетоацетат, - оксимасляная кислота, ацетон).(15) Упорная гипогликемия вынуждает организм для удовлетворения своих энергетических нужд идти по пути усиления жирового обмена. В результате этого развивается гиперлактатемия, гиперлипидемия, жировая дегенерация печени и почек. Накопление молочной кислоты ингибирует выделение мочевой кислоты почечными канальцами и способствует развитию гиперурикемии. Высокий уровень мочевой кислоты связан также с повышением активности гексозомонофосфатного цикла.(40) Гиперурикемия не сопровождается соответствующим увеличением выделения её с мочой, что обусловлено появлением симптомов подагры. В этих условиях резко возрастает количество пировиноградной кислоты, что приводит к состоянию хронического ацидоза. Гликогеноз III типа (Болезнь Форбса Кори, лимитдекстриноз) При III типе гликогеновой болезни отмечается недостаточность фермента амило –1,6-глюкозидазы и олиго- 1,4 -глюкантрансферазы, либо их сочетание. Поскольку боковые цепи гликогена полностью не отщепляются, главные цепи оказываются недоступными для фосфорилазы. Накапливается гликоген с короткой внешней цепью. Патофизиология. Продукция глюкозы при гликогенозе III типа нарушена не полностью, поскольку глюкоза образуется под действием фосфорилазы из боковых цепей гликогена, а также путём гликонеогенеза. Накапливаемый в организме полисахарид напоминает по структуре лимитдекстрин, который отличается от гликогена значительно укороченными наружными ветвями молекул. Максимум поглощения его комплекса с йодом находится при 390 нм, в отличие от максимума поглощения комплекса с йодом гликогена (при 460 нм). Накоплением в клетках лимитдекстрина послужило основанием для того, чтобы гликогеноз этого типа назвали лимитдекстринозом .(1) Локализация мутаций при различных формах гликогенозов. Таблица №1
|